Skip to main content
Log in

Large-scale Heat Waves in the South of European Russia

  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

For large-scale heat waves that occur in the south of the European part of Russia (EPR), the frequency variability since the beginning of the 20th century is considered, including variations on decadal scales and a trend during the global warming period, accompanying variations in the aridity index SPI, and the structure of the longest waves. The geographic distribution of air temperature anomalies on the territory of the Russian Federation, large-scale circulation conditions, the North Atlantic sea surface temperature (SST) anomalies, which accompanied heat waves in the south of the EPR, are analyzed using the composite analysis. In particular, the wave structure was revealed of the composite field of the air temperature anomaly for days with heat waves and the related 500 hPa geopotential height (\(H_{500}\)) fields over Russia. The \(H_{500}\) field structure generally corresponds to the negative phase of the East Atlantic–Western Russia (EAWR) circulation pattern. Similar structures of the geopotential field are observed during heat waves in the northern half of the EPR. However, in this case, there are specific features that contribute to the inflow of cold air from the north to the southern regions. It is shown that the values of the EAWR index are significantly shifted towards negative values in the months when long heat waves occur over the southern EPR. The waves are accompanied by positive anomalies of the North Atlantic SST and the strongly increased blocking anticyclone activity. The downward trend in the EAWR index observed in recent decades and the SST rise expected with the global warming increase a risk of droughts in the main grain-producing region of the country.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

REFERENCES

  1. M. Yu. Bardin, "Anticyclonic Quasi-stationary Circulation and Its Effect on Air Temperature Anomalies and Extremes over Western Russia," Meteorol. Gidrol., No. 2 (2007) [Russ. Meteorol. Hydrol., No. 2, 32 (2007)].

    Article  Google Scholar 

  2. M. Yu. Bardin and T. V. Platova, "Long-period Variations in Extreme Temperature Statistics in Russia as Linked to the Changes in Large-scale Atmospheric Circulation and Global Warming," Meteorol. Gidrol., No. 12 (2019) [Russ. Meteorol. Hydrol., No. 12, 44 (2019)].

    Article  Google Scholar 

  3. M. Yu. Bardin and T. V. Platova, "Changes in Seasonal Air Temperature Extremes in Moscow and the Central Regions of European Russia," Meteorol. Gidrol., No. 7 (2020) [Russ. Meteorol. Hydrol., No. 7, 45 (2020)].

    Article  Google Scholar 

  4. M. Yu. Bardin, T. V. Platova, and O. F. Samokhina, "Long-period Changes in the Frequency of Cyclones in the Northern Extratropics," Fundamental’naya i Prikladnaya Klimatologiya, No. 2 (2021) [in Russian].

  5. M. Yu. Bardin, T. V. Platova, and O. F. Samokhina, "Variability of Anticyclonic Activity in the Northern Extratropics," Fundamental’naya i Prikladnaya Klimatologiya, No. 3 (2019) [in Russian].

  6. M. Yu. Bardin, E. Ya. Ran’kova, T. V. Platova, O. F. Samokhina, and I. A. Korneva, "Modern Surface Climate Change as Inferred from Routine Climate Monitoring Data," Meteorol. Gidrol., No. 5 (2020) [Russ. Meteorol. Hydrol., No. 5, 45 (2020)].

    Article  Google Scholar 

  7. O. N. Bulygina, V. N. Razuvaev, and T. M. Aleksandrova, Description of the Dataset of Daily Air Temperature and Precipitation for Weather Stations of Russia and the Former USSR (TTTR), Database State Registration Certificate No. 2014620942 (2014) [in Russian].

  8. Report on Climate Features in the Russian Federation in 2021 (Roshydromet, Moscow, 2022) [in Russian].

  9. Climate Change 2020. Overview of the State and Trends in Climate Change in Russia. The Summer: June–August (Roshydromet, IGKE, Moscow, 2020), http://climatechange.igce.ru/index.php?option=com_docman&task= doc_download&gid=293&Itemid=75&lang=ru [in Russian].

  10. O. Yu. Kovalenko, M. Yu. Bardin, and E. N. Voskresenskaya, "Changes in Extreme Air Temperature Characteristics in the Black Sea Region and Their Interannual Variability Linked to Large-scale Climatic Processes," Fundamental’naya i Prikladnaya Klimatologiya, No. 2 (2017) [in Russian].

  11. A. M. Obukhov, M. V. Kurganskii, and M. S. Tatarskaya, "Dynamic Conditions of the Origin of Droughts and Other Large-scale Weather Anomalies," Meteorol. Gidrol., No. 10 (1984) [Sov. Meteorol. Hydrol., No. 10 (1984)].

  12. E. Ya. Rankova, G. V. Alekseev, M. A. Aleshina, K. D. Babina, M. Yu. Bardin, A. I. Bedritskii, R. M. Vil’fand, E. P. Gordov, S. K. Gulev, A. Dufour, O. G. Zolina, D. B. Kiktev, A. V. Kislov, V. N. Kryzhov, N. E. Kuksova, A. S. Lavrov, I. I. Mokhov, Yu. P. Perevedentsev, T. V. Platova, A. A. Romanovskaya, Yu. L. Rudakova, O. F. Samokhina, V. A. Semenov, S. M. Semenov, V. V. Sokolov, A. M. Sterin, V. M. Khan, E. I. Khlebnikova, E. A. Cherenkova, K. M. Shantalinskii, B. G. Sherstyukov, and I. M. Shkol’nik, "Statistical Climatology: Modern Achievements and New Ideas (Scientific Readings in Memory of G.V. Gruza)," Fundamental’naya i Prikladnaya Klimatologiya, No. 1, 8 (2022) [in Russian].

  13. V. A. Semenov and E. A. Cherenkova, "Evaluation of the Atlantic Multidecadal Oscillation Impact on Large-scale Atmospheric Circulation in the Atlantic Region in Summer," Dokl. Akad. Nauk, No. 6, 478 (2018) [Dokl. Earth Sci., No. 2, 478 (2018)].

  14. V. A. Semenov, A. V. Chernokulskii, and O. N. Solomina, "Influence of Long-period Oscillations on the Development of Droughts in Northern Eurasia," Dokl. Akad. Nauk, No. 3, 471 (2016) [Dokl. Earth Sci., No. 1, 471 (2016)].

  15. E. A. Cherenkova, M. Yu. Bardin, T. V. Platova, and V. A. Semenov, "Influence of North Atlantic SST Variability and Changes in Atmospheric Circulation on the Frequency of Summer Droughts in the East European Plain," Meteorol. Gidrol., No. 12 (2020) [Russ. Meteorol. Hydrol., No. 12, 45 (2020)].

    Article  Google Scholar 

  16. E. A. Cherenkova and A. N. Zolotokrylin, "On Comparability of Some Quantitative Drought Indices," Fundamental’naya i Prikladnaya Klimatologiya, No. 2 (2016) [in Russian].

    Article  Google Scholar 

  17. B. A. Ashabokov, A. A. Tashilova, L. A. Kesheva, and Z. A. Taubekova, "Trends in Precipitation Parameters in the Climate Zones of Southern Russia (1961–2011)," Russ. Meteorol. Hydrol., No. 3, 42 (2017).

    Article  Google Scholar 

  18. A. G. Barnston and R. E. Livezey, "Classification, Seasonality and Persistence of Low-frequency Atmospheric Circulation Patterns," Mon. Wea. Rev., 115 (1987).

    Article  Google Scholar 

  19. D. C. Edwards and T. B. McKee, Characteristics of 20th Century Drought in the United States at Multiple Time Scales, Colorado State University Dept. of Atmospheric Science Climatology Rep., Atmos. Sci. Paper 634 (1997).

  20. "IPCC, 2018: Summary for Policymakers," in Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty, Ed. by V. Masson-Delmotte, P. Zhai, H.-O. Portner, D. Roberts, J. Skea, P. R. Shukla, A. Pirani, W. Moufouma-Okia, C. Pean, R. Pidcock, S. Connors, J. B. R. Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (Cambridge Univ. Press, Cambridge, UK and New York, NY, USA, 2018).

  21. IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Pean, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekci, R. Yu, and B. Zhou (Cambridge Univ. Press, Cambridge, United Kingdom and New York, NY, USA).

  22. E. Kalnay, M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu, A. Leetmaa, R. Reynolds, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K. C. Mo, C. Ropelewski, J. Wang, R. Jenne, and D. Joseph, "The NCEP/NCAR 40-year Reanalysis Project," Bull. Amer. Meteorol. Soc., 77 (1996).

    Article  Google Scholar 

  23. V. M. Kattsov, I. M. Shkolnik, and S. V. Efimov, "Climate Change Projections in Russian Regions: The Detailing in Physical and Probability Spaces," Russ. Meteorol. Hydrol., No. 7, 42 (2017).

    Article  Google Scholar 

  24. T. B. McKee, N. J. Doesken, and J. Kliest, "The Relationship of Drought Frequency and Duration to Time Scales," in Proceedings of Eighth Conference of Applied Climatology, Anaheim, CA (Amer. Meteorol. Soc., 1993).

  25. V. N. Razuvaev, E. G. Apasova, and R. A. Martuganov, Daily Temperature and Precipitation Data for 223 USSR Stations, ORNL/CDIAC-56, NDP-040, ESD Publ. No. 4194 (Carbon Dioxide Information Data Center, Oak Ridge National Lab., Oak Ridge, TN, 1993).

  26. R. W. Reynolds, T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, "Daily High-resolution Blended Analyses for Sea Surface Temperature," J. Climate, 20 (2007).

    Article  Google Scholar 

  27. H. C. S. Thom, "A Note on the Gamma Distribution," Mon. Wea. Rev., 86 (1958).

    Article  Google Scholar 

  28. C. Volosciuk, D. Maraun, V. A. Semenov, N. Tilinina, S. K. Gulev, and M. Latif, "Rising Mediterranean Sea Surface Temperatures Amplify Extreme Summer Precipitation in Central Europe," Sci. Rep., 6 (2016).

    Article  Google Scholar 

  29. O. Zolina, C. Simmer, K. Belyaev, S. K. Gulev, and P. Koltermann, "Changes in the Duration of European Wet and Dry Spells during the Last 60 Years," J. Climate, 26 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Bardin.

Additional information

Translated from Meteorologiya i Gidrologiya, 2023, No. 1, pp. 5-17. https://doi.org/10.52002/0130-2906-2023-1-5-17.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bardin, M.Y., Platova, T.V. & Popov, I.O. Large-scale Heat Waves in the South of European Russia. Russ. Meteorol. Hydrol. 48, 1–9 (2023). https://doi.org/10.3103/S1068373923010016

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068373923010016

Keywords

Navigation