Skip to main content
Log in

Improvement of graphene oxide characteristics depending on base washing

  • Production, Structure, Properties
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

Graphene oxide (GO) has been synthesized using Hummer's method. This oxidation process decorates the graphene sheets by different types of functional groups, yet the harsh oxidation condition leads to introduce many of carbonaceous fragments, which decreasing GO efficiency in many faces, touched its applications. The synthesized GO has been washed by 10 M NaOH to produce (GO n ). Thereafter quality enhancement of GO has been studied by several analyses; the introduced hydroxyl and carboxyl groups into few-layer graphene (FLG) surface have been determined by Fourier transform infrared spectra (FTIR). Raman spectroscopy analysis identified the defect degree and the transition of graphite from a crystalline to an amorphous structure and vice versa. The interlayer spacings of FLG and GO n were investigated by X-ray diffraction (XRD) and the thermal stability of as-received and modified materials were examined by thermal gravimetric analysis (TGA). The morphological structure was characterized by scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). The various investigations confirmed that the properties of GO were improved by neutralization impact, which may pave the way to new developments in the GO-based applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dreyer, D.R., Park, S., Bielawski, C.W., and Ruoff, R.S., The chemistry of graphene oxide, Chem. Soc. Rev., 2010, vol. 39, pp. 228–240.

    Article  CAS  Google Scholar 

  2. Su, X., Wang, G., Li, W., Bai, J., and Wang, H., A simple method for preparing graphene nano-sheets at low temperature, Adv. Powder. Technol., 2013, vol. 24, pp. 317–323.

    Article  CAS  Google Scholar 

  3. Slonczewski, J.C. and Weiss, P.R., Band structure of graphite, Phys. Rev., 1958, vol. 109, pp. 272–279.

    Article  CAS  Google Scholar 

  4. Novoselov, K.S., Geim, A.K., Morozov, S.V., et al., Electric field effect in atomically thin carbon films, Science, 2004, vol. 306, pp. 666–669.

    Article  CAS  Google Scholar 

  5. Singh, V., Joung, D., Zhai, L., Das, S., et al., Graphene based materials: Past, present and future, Prog. Mater. Sci., 2011, vol. 56, pp. 1178–1271.

    Article  CAS  Google Scholar 

  6. Kim, J., Cote, L.J., Kim, F., Yuan, W., Shull, K.R., and Huang, J., Graphene oxide sheets at interfaces, J. Am. Chem. Soc., 2010, vol. 132, pp. 8180–8186.

    Article  CAS  Google Scholar 

  7. Wang, G., Wang, B., Park, J., Yang, J., Shen, X., and Yao, J., Synthesis of enhanced hydrophilic and hydrophobic graphene oxide nanosheets by a solvothermal method, Carbon, 2009, vol. 47, pp. 68–72.

    Article  CAS  Google Scholar 

  8. Brodie, B.C., On the atomic weight of graphite, Philos. Trans. R. Soc. London., 1859, vol. 149, pp. 249–59.

    Article  Google Scholar 

  9. Staudenmaier, L., Method for the preparation of graphitic acid, Ber. Dtsch. Chem. Ges., 1898, vol. 31, pp. 1481–1487.

    Article  CAS  Google Scholar 

  10. Hummers, W.S. and Offeman, R.E., Preparation of graphitic oxide, J. Am Chem. Soc, 1958, vol. 80, pp. 1339–1349.

    Article  CAS  Google Scholar 

  11. Compton, O.C. and Nguyen, S-B.T., Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials, Small, 2010, vol. 6, no. 6, pp. 711–723.

    Article  CAS  Google Scholar 

  12. Johnson, J.A., Benmore, C.J., Stankovich, S., and Ruoff, R.S., A neutron diffraction study of nano-crystalline graphite oxide, Carbon, 2009, vol. 47, pp. 2239–2243.

    Article  CAS  Google Scholar 

  13. Cai, W.W., Piner, R.D., Stademann, F.J., Park, S., et al., Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide, Science, 2008, vol. 321, pp. 1815–1817.

    Article  CAS  Google Scholar 

  14. Gao, W., Alemany, L.B., Ci, L., and Ajayan, P.M., New insights into the structure and reduction of graphite oxide, Nat. Chem., 2009, vol. 1, pp. 403–408.

    Article  CAS  Google Scholar 

  15. He, H.Y., Klinowski, J., Forster, M., and Lerf, A., A new structural model for graphite oxide, Chem. Phys. Lett., 1998, vol. 287, pp. 53–56.

    Article  CAS  Google Scholar 

  16. Lerf, A., He, H., Forster, M., and Klinowski, J., Structure of graphite oxide revisited, J. Phys. Chem. B, 1998, vol. 102, pp. 4477–4482.

    Article  CAS  Google Scholar 

  17. Krishnamoorthy, K., Veerapandian, M., Yun, K., and Kim, S.J., The chemical and structural analysis of graphene oxide with different degrees of oxidation, Carbon, 2013, vol. 53, pp. 38–49.

    Article  CAS  Google Scholar 

  18. Li, Z., Zhang, W., Luo, Y., Yang, J., and Hou, J.G., How graphene is cut upon oxidation, J. Am. Chem. Soc., 2009, vol. 131, pp. 6320–6321.

    Article  CAS  Google Scholar 

  19. Shao, L., Tobias, G., Salzmann, C.G., Ballesteros, B., et al., Removal of amorphous carbon for the efficient sidewall functionalisation of single-walled carbon nanotubes, Chem. Commun., 2007, vol. 47, pp. 5090–5092

    Article  Google Scholar 

  20. Wang, Z., Shirley, M.D., Meikle, S.T., Whitby, L.D.R., and Mikhalovsky, S.V., The surface acidity of acid oxidised multi-walled carbon nanotubes and the influence of in-situ generated fulvic acids on their stability in aqueous dispersions, Carbon, 2009, vol. 47, pp. 73–79.

    Article  CAS  Google Scholar 

  21. Huang, Y.F., and Lin, C.W., Facile synthesis and morphology control of graphene oxide/polyaniline nanocomposites via in-situ polymerization process, Polymer, 2012, vol. 53, pp. 2574–2582.

    Article  CAS  Google Scholar 

  22. Xin, Y., Liu, J., Zhou, Y., Liu, W., et al., Preparation and characterization of Pt supported on graphene with enhanced electrocatalytic activity in fuel cell, J. Power. Sources, 2011, vol. 196, pp. 1012–1018.

    Article  CAS  Google Scholar 

  23. Gunasekaran, V., Krishnamoorthy, K., Mohan, R., and Kim, S-J., An investigation of the electrical transport properties of graphene-oxide thin lms, Mater. Chem. Phys., 2012, vol. 132, pp. 29–33.

    Article  Google Scholar 

  24. Krishnamoorthy, K., Navaneethaiyer, U., Mohan, R., Lee, J., and Kim, S-J., Graphene oxide nanostructures modied multifunctional cotton fabrics, Appl. Nanosci., 2012, vol. 2, pp. 119–126.

    Article  CAS  Google Scholar 

  25. Wang, G., Yang, J., Park, J., Gou, X., et al., Facile synthesis and characterization of graphene nanosheets, J. Phys. Chem., 2008, vol. 112, pp. 8192–8195.

    CAS  Google Scholar 

  26. Lee, D.W., Santos, L.D.L., Seo, J.W., Felix, L.L., et al., The structure of graphite oxide: Investigation of its surface chemical groups, J. Phys. Chem. B, 2010, vol. 114, pp. 5723–5728.

    Article  CAS  Google Scholar 

  27. Venugopal, G., Jung, M-H., Suemitsu, M., and Kim, S-J., Fabrication of nanoscale three-dimensional graphite stacked junctions by focused-ion-beam and observation of anomalous transport characteristics, Carbon, 2011, vol. 49, pp. 2766–2772.

    Article  CAS  Google Scholar 

  28. Vasu, K.S., Chakraborty, B., Sampath, S., and Sood, A.K., Probing top-gated eld effect transistor of reduced graphene oxide monolayer made by dielectrophoresis. Solid State Comm., 2010, vol. 150, pp. 1295–1298.

    Article  CAS  Google Scholar 

  29. Pimenta, M.A., Dresselhaus, G., Dresselhaus, M.S., et al., Studying disorder in graphite-based systems by Raman spectroscopy, Phys. Chem. Phys., 2007, vol. 9, pp. 1276–1291.

  30. Ferrari, A.C., Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects, Solid State Comm., 2007, vol. 143, pp. 47–57.

    Article  CAS  Google Scholar 

  31. Ferrari, A.C. and Robertson, J., Interpretation of Raman spectra of disordered and amorphous carbon, Phys. Rev. B, 2000, vol. 61, pp. 14095–14107.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kh. I. Kabel.

Additional information

The text was submitted by the authors in English.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabel, K.I., Farag, A.A., Elnaggar, E.M. et al. Improvement of graphene oxide characteristics depending on base washing. J. Superhard Mater. 37, 327–334 (2015). https://doi.org/10.3103/S1063457615050056

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063457615050056

Keywords

Navigation