Skip to main content
Log in

Microstructure of stainless steel after heat treatment: Data from atomic-force microscopy

  • Published:
Steel in Translation Aims and scope

Abstract

The micro- and nanostructure of 40Kh13 stainless steel is studied by optical, scanning electron, and atomic-force microscopy. The images of the steel’s structure and phase composition in three different states (after annealing, quenching, and high-temperature tempering) are compared. The optical images of the ferrite–pearlite structure with considerable content of (Cr, Fe)23C6 globular carbides obtained after annealing are compared with the results of scanning electron and atomic-force microscopy. It is found that the qualitative conclusions regarding the microstructure of the steel obtained by atomic-force and scanning electron microscopy not only agree with the results of optical microscopy but also provide greater detail. Data from the scanning electron microscope indicate that large carbides are located at the boundaries of ferrite grains. Some quantity of carbides may be found within the small ferrite grains. The size of the inclusions may be determined. The structure formed after quenching consists of coarse acicular martensite. Images from the atomic-force microscope show the acicular structure with greater clarity; three-dimensional images may be constructed. The undissolved carbides are also globular. The size of the martensite plates may be determined. The structure of the steel after high-temperature tempering (tempering sorbite) is formed as a result of the decomposition of martensite to ferrite–carbide mixture, with the deposition of regular rounded carbides. As confirmed by spectral analysis, the individual and row carbides (Cr, Fe)23C6 that appear contain chromium, which rapidly forms carbides. This structure is stronger than martensite. Data from uniaxial tensile tests are presented for all the states; the hardness HB is determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eksner, G.E., Quality and quantity surface microscopy, in Fizicheskoe metallovedenie (Physical Metallurgy), Kan, R.U. and Khaazen, P.T., Eds., Moscow: Metallurgiya, 1987, vol. 1, pp. 50–111.

    Google Scholar 

  2. Knechtel, H.E., Kindle, W.F., McCall, J.L., and Buchheit, R.D., Metallography, in Metallography. Tools and Techniques in Physical Metallurgy, Weinberg, F., Ed., New York: McGraw-Hill, 1970, vol. 1, pp. 329–400.

    Google Scholar 

  3. Binnig, G., Quate, C.F., and Gerber, Ch., Atomic force microscope, Phys. Rev. Lett., 1986, vol. 56, no. 9, pp. 930–933.

    Article  Google Scholar 

  4. Mironov, V.L., Osnovy skaniruyushchei zondovoi mikroskopii (Principles of Scanning Probe Microscopy), Moscow: Tekhnosfera, 2004.

    Google Scholar 

  5. Lapshin, R.V., Feature-oriented scanning methodology for probe microscopy and nanotechnology, Nanotechnology, 2004, vol. 15, no. 9, pp. 1135–1151.

    Article  Google Scholar 

  6. Zuev, L.B. and Shlyakhova, G.V., On possibilities of atomic force microscopy in metallography of carbon steels, Materialovedenie, 2014, no. 7, pp. 7–12.

    Google Scholar 

  7. Dobrotvorskii, A.M., Maslikova, E.I., Shevyakova, E.P., Ul’yanov, P.G., Usachev, D.Y., Senkovskiy, B.V., Adamchuk, V.K., Pushko, S.V., Mal’tsev, A.A., and Balizh, K.S., Metallographic study of construction materials with atomic force microscopy method, Inorg. Mater., 2014, vol. 50, no. 15, pp. 1487–1494.

    Article  Google Scholar 

  8. Ulyanov, P.G., Usachov, D.Yu., Fedorov, A.V., Bondarenko, A.S., Senkovskiy, B.V., Vyvenko, O.F., Pushko, S.V., Balizh, K.S., Maltsev, A.A., Borygina, K.I., Dobrotvorskii, A.M., and Adamchuk, V.K., Microscopy of carbon steels: combined AFM and EBSD study, Appl. Surf. Sci., 2013, vol. 267, pp. 216–218.

    Article  Google Scholar 

  9. Bykov, I.V., Methods of point-by-point relief measurements, action forces and local properties: new approach for complex analysis in atomic force microscopy, Nauch. Priborostr., 2009, no. 4 (19), pp. 38–43.

    Google Scholar 

  10. Danilov, V.I., Shlyakhova, G.V., and Semukhin, B.S., Plastic deformation macrolocalization. Local stress and fracture in ultrafine grain titanium, Appl. Mech. Mater., 2014, vol. 682, pp. 351–356.

    Article  Google Scholar 

  11. Shlyakhova, G.V., Barannikova, S.A., and Zuev, L.B., Nanostructure of superconducting Nb–Ti cable, Steel Transl., 2013, vol. 43, no. 10, pp. 640–643.

    Article  Google Scholar 

  12. Zuev, L.B., Shlyakhova, G.V., Barannikova, S.A., and Kolosov, S.V., Microstructure of the elements of a superconducting alloy Nb–Ti cable, Russ. Metall. (Engl. Transl.), 2013, vol. 2013, no. 3, pp. 229–234.

    Article  Google Scholar 

  13. Afonin, V.K., Ermakov, B.S., Lebedev, E.L., et al., Metally i splavy: spravochnik (Metals and Alloys: Handbook), Solntsev, Yu.P., Ed., St. Petersburg: Professional, 2007.

    Google Scholar 

  14. Pelleg, J., Mechanical Properties of Materials, Dordrecht: Springer-Verlag, 2013.

    Book  Google Scholar 

  15. Wiesendanger, R., Scanning Probe Microscopy and Spectroscopy. Methods and Applications, Cambridge: Cambridge Univ. Press, 1994.

    Book  Google Scholar 

  16. Beckert, M. and Klemm, H., Handbuch der Metallographischen Ätzverfahren, Leipzig: Dtsch. Verlag Grundstoffind., 1976.

    Google Scholar 

  17. Barannikova, S.A., Bochkareva, A.V., Lunev, A.G., Shlyakhova, G.V., and Zuev, L.B., Changes in ultrasound velocity in the plastic deformation of high-chromium steel, Steel Transl., 2016, vol. 46, no. 8, pp. 552–557.

    Article  Google Scholar 

  18. Trefilov, V.I., Moiseev, V.F., and Pechkovskii, E.P., Deformatsionnoe uprochnenie i razrushenie polikristallicheskikh metallov (Mechanical Hardening and Destruction of Polycrystalline Metals), Kiev: Naukova Dumka, 1989.

    Google Scholar 

  19. Metallografiya zheleza. Atlas stalei (Iron Metallography. Atlas of Steels), Tavadze, F.N., Ed., Moscow: Metallurgiya, 1972.

  20. GOST (State Standard) 8233-56: Steel. Microstructure Standards, Moscow: Izd. Standartov, 2004.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Shlyakhova.

Additional information

Original Russian Text © G.V. Shlyakhova, A.V. Bochkareva, S.A. Barannikova, L.B. Zuev, E.V. Martusevich, 2017, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Chernaya Metallurgiya, 2017, No. 2, pp. 133–139.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shlyakhova, G.V., Bochkareva, A.V., Barannikova, S.A. et al. Microstructure of stainless steel after heat treatment: Data from atomic-force microscopy. Steel Transl. 47, 99–104 (2017). https://doi.org/10.3103/S0967091217020103

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0967091217020103

Keywords

Navigation