Skip to main content
Log in

Chondroitin Sulfate Increases Transfection Efficiency by DNA–PEI Complexes

  • EXPERIMENTAL WORKS
  • Published:
Molecular Genetics, Microbiology and Virology Aims and scope Submit manuscript

Abstract

One of the most popular nonviral delivery systems for gene therapy constructs are carriers based on polyethylenimine (PEI) DNA complexes. A number of disadvantages associated with the lack of targeted delivery and increased cytotoxicity are overcome by adding auxiliary molecules to the complexes. An example of this is chondroitin sulfate (CS). The purpose of this work was to assess the effect of CS on the transfection properties of DNA–PEI complexes under different conditions of their preparation and transfection protocols. All complexes were prepared in solutions with high and low ionic strength. Transfection of C26 cells was performed according to two protocols differing in the presence of serum in the medium. The portion of transfected cells, transgene expression level, and cell viability were the main parameters of assessing the transfection efficiency. In binary DNA–PEI complexes prepared in different salt conditions, using different transfection protocols, the difference in the portion of transfected cells reached ten times. Addition of CS improved this transfection efficiency indicator up to 6.5 times, while the maximum difference in this indicator for the corresponding ternary complexes was reduced to 2.5 times. Changes in the proportion of CS in the composition of the complexes had an insignificant effect on their transfection properties. In the case of complexes prepared in high ionic strength solutions, the order of CS addition was also important. The best results of transfection efficiency were achieved with ternary complexes prepared in low ionic strength solutions, using a serum-free protocol, while these indicators were comparable with the data for Lipofectamine 2000. The addition of chondroitin sulfate improves the transfection properties of DNA–PEI complexes and makes them less dependent on the methods of preparation and transfection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Asad, A.S., Ayala, M.A.M., Gottardo, M.F., Zuccato, C., Javier, A., Candia, N., et al., Viral gene therapy for breast cancer: progress and challenges, Expert Opin. Biol. Ther., 2017, vol. 17, no. 8, pp. 945–959. https://doi.org/10.1080/14712598.2017.1338684

    Article  CAS  PubMed  Google Scholar 

  2. Samal, S.K., Dash, M., Van Vlierberghe, S., Kaplan, D.L., Chiellini, E., Van Blitterswijk, C., et al., Cationic polymers and their therapeutic potential, Chem. Soc. Rev., 2012, vol. 41, no. 21, pp. 7147–7194. https://doi.org/10.1039/c2cs35094g

    Article  CAS  PubMed  Google Scholar 

  3. Boussif, O., Lezoualc’h, F., Zanta, M., Mergny, M., Schermant, D., Demeneixt, B., et al., A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: Polyethylenimine, Proc. Natl. Acad. Sci. U. S. A., 1995, vol. 92, no. 16, pp. 7297–7301. https://doi.org/10.1073/pnas.92.16.7297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kircheis, R., Wightman, L., and Wagner, E., Design and gene delivery activity of modified polyethylenimines, Adv. Drug Delivery Rev., 2001, vol. 53, no. 3, pp. 341–358. https://doi.org/10.1016/S0169-409X(01)00202-2

    Article  CAS  Google Scholar 

  5. Hall, A., Lächelt, U., Bartek, J., Wagner, E., and Moghimi, S.M., Polyplex evolution: understanding biology, optimizing performance, Mol. Ther., 2017, vol. 25, no. 7, pp. 1–15. https://doi.org/10.1016/j.ymthe.2017.01.024

    Article  CAS  Google Scholar 

  6. Ruponen, M., Ylä-Herttuala, S., and Urtti, A., Interactions of polymeric and liposomal gene delivery systems with extracellular glycosaminoglycans: Physicochemical and transfection studies, Biochim. Biophys. Acta,Biomembr., 1999, vol. 1415, no. 2, pp. 331–341. https://doi.org/10.1016/S0005-2736(98)00199-0

    Article  CAS  Google Scholar 

  7. Plank, C., Mechtler, K., Szoka, F.J., and Wagner, E., Activation of the complement system by synthetic DNA complexes: a potential barrier for intravenous gene delivery, Hum. Gene Ther., 1996, vol. 7, no. 12, pp. 1437–1446. https://doi.org/10.1089/hum.1996.7.12-1437

    Article  CAS  PubMed  Google Scholar 

  8. Coll, J., Chollet, P., Brambilla, E., Desplanques, D., Behr, J., and Favrot, M., In vivo delivery to tumors of DNA complexed with linear polyethylenimine, Hum. Gene Ther., 1999, vol. 10, no. 10, pp. 1659–1666. https://doi.org/10.1089/10430349950017662

    Article  CAS  PubMed  Google Scholar 

  9. Ogris, M., Brunner, S., Schu, S., Kircheis, R., and Wagner, E., PEGylated DNA/transferrin–PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery, Gene Ther., 1999, vol. 6, no. 4, pp. 595–605. https://doi.org/10.1038/sj.gt.3300900

    Article  CAS  PubMed  Google Scholar 

  10. Ulasov, A.V., Khramtsov, Y.V., Trusov, G.A., Rosenkranz, A.A., Sverdlov, E.D., and Sobolev, A.S., Properties of PEI-based polyplex nanoparticles that correlate with their transfection efficacy, Mol. Ther., 2011, vol. 19, no. 1, pp. 103–112. https://doi.org/10.1038/mt.2010.233

    Article  CAS  PubMed  Google Scholar 

  11. Alekseenko, I.V., Snezhkov, E.V., Chernov, I.P., Pleshkan, V.V., Potapov, V.K., Sass, A.V., et al., Therapeutic properties of a vector carrying the HSV thymidine kinase and GM-CSF genes and delivered as a complex with a cationic copolymer, J. Transl. Med., 2015, vol. 13, no. 1, pp. 1–16. https://doi.org/10.1186/s12967-015-0433-0

    Article  CAS  Google Scholar 

  12. Pathak, A., Kumar, P., Chuttani, K., Jain, S., Mishra, A.K., Vyas, S.P., et al., Gene expression, biodistribution, and pharmacoscintigraphic evaluation of chondroitin sulfate-PEI nanoconstructs mediated tumor gene therapy, ACS Nano, 2009, vol. 3, no. 6, pp. 1493–1505. https://doi.org/10.1021/nn900044f

    Article  CAS  PubMed  Google Scholar 

  13. Kurosaki, T., Kitahara, T., Kawakami, S., Nishida, K., Nakamura, J., Teshima, M., et al., The development of a gene vector electrostatically assembled with a polysaccharide capsule, Biomaterials, 2009, vol. 30, no. 26, pp. 4427–4434. https://doi.org/10.1016/j.biomaterials.2009.04.041

    Article  CAS  PubMed  Google Scholar 

  14. Ito, T., Iida-Tanaka, N., and Koyama, Y., Efficient in vivo gene transfection by stable DNA/PEI complexes coated by hyaluronic acid, J. Drug Targeting, 2008, vol. 16, no. 4, pp. 276–281. https://doi.org/10.1080/10611860801900728

    Article  CAS  Google Scholar 

  15. Underhill, C., CD44: The hyaluronan receptor, J. Cell Sci., 1992, vol. 103, pp. 293–298.

    CAS  PubMed  Google Scholar 

  16. Chen, C., Zhao, S., Karnad, A., and Freeman, J.W., The biology and role of CD44 in cancer progression: therapeutic implications, J. Hematol. Oncol., 2018, vol. 11, no. 1, pp. 1–23. https://doi.org/10.1186/s13045-018-0605-5

    Article  CAS  Google Scholar 

  17. Kinugasa, Y., Matsui, T., and Takakura, N., CD44 expressed on cancer-associated fibroblasts is a functional molecule supporting the stemness and drug resistance of malignant cancer cells in the tumor microenvironment, Stem Cells, 2014, vol. 32, no. 1, pp. 145–156. https://doi.org/10.1002/stem.1556

    Article  CAS  PubMed  Google Scholar 

  18. Lo, Y.L., Sung, K.H., Chiu, C.C., and Wang, L.F., Chemically conjugating polyethylenimine with chondroitin sulfate to promoteCD44-mediated endocytosis for gene delivery, Mol. Pharm., 2013, vol. 10, no. 2, pp. 664–676. https://doi.org/10.1021/mp300432s

    Article  CAS  PubMed  Google Scholar 

  19. Dubey, R.D., Klippstein, R., Wang, J.T.-W., Hodgins, N., Mei, K.-C., Sosabowski, J., et al., Novel hyaluronic acid conjugates for dual nuclear imaging and therapy in CD44-expressing tumors in mice in vivo, Nanotheranostics, 2017, vol. 1, no. 1, pp. 59–79. https://doi.org/10.7150/ntno.17896

    Article  PubMed  PubMed Central  Google Scholar 

  20. Guillem, V.M. and Aliño, S.F., Transfection pathways of nonspecific and targeted PEI-polyplexes, Gene Ther. Mol. Biol., 2004, vol. 8, pp. 369–384.

    Google Scholar 

  21. Ogris, M., Steinlein, P., Kursa, M., Mechtler, K., Kircheis, R., and Wagner, E., The size of DNA/transferrin-PEI complexes is an important factor for gene expression in cultured cells, Gene Ther., 1998, vol. 5, no. 10, pp. 1425–1433. https://doi.org/10.1038/sj.gt.3300745

    Article  CAS  PubMed  Google Scholar 

  22. Wightman, L., Kircheis, R., Carotta, S., Ruzicka, R., Kursa, M., and Wagner, E., Different behavior of branched and linear polyethylenimine for gene delivery in vitro and in vivo, J. Gene Med., 2001, vol. 3, no. 4, pp. 362–372. https://doi.org/10.1002/jgm.187

    Article  CAS  PubMed  Google Scholar 

  23. Song, H., Wang, G., He, B., Li, L., Li, C., Lai, Y., et al., Cationic lipid-coated PEI/DNA polyplexes with improved efficiency and reduced cytotoxicity for gene delivery into mesenchymal stem cells, Int. J. Nanomed., 2012, vol. 7, pp. 4637–4648. https://doi.org/10.2147/IJN.S33923

    Article  CAS  Google Scholar 

  24. Guo, W. and Lee, R.J., Efficient gene delivery via non-covalent complexes of folic acid and polyethylenimine, J. Controlled Release, 2001, vol. 77, pp. 131–138. https://doi.org/10.1016/S0168-3659(01)00456-4

    Article  CAS  Google Scholar 

  25. Cheraghi, R., Alipour, M., Nazari, M., and Hosseinkhani, S., Optimization of conditions for gene delivery system based on PEI, Nanomed. J., 2017, vol. 4, no. 1, pp. 8–16. https://doi.org/10.22038/nmj.2017.8047

    Article  CAS  Google Scholar 

  26. Koyama, Y., Sugiura, K., Yoshihara, C., Inaba, T., and Ito, T., Highly effective non-viral antitumor gene therapy system comprised of biocompatible small plasmid complex particles consisting of pDNA, anionic polysaccharide, and fully deprotected linear polyethylenimine, Pharmaceutics, 2015, vol. 7, no. 3, pp. 152–164. https://doi.org/10.3390/pharmaceutics7030152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Breunig, M., Lungwitz, U., Liebl, R., and Goepferich, A., Breaking up the correlation between efficacy and toxicity for nonviral gene delivery, Proc. Natl. Acad. Sci. U. S. A., 2007, vol. 104, no. 36, pp. 14454–14459. https://doi.org/10.1073/pnas.0703882104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, grant KOMPhI no. 17-00-00190, “The Investigation of Regulatory Elements of Specific Gene Expression in Tumor-Associated Fibroblasts and the Possibilities of their Use for Engineering of Artificial Immune Coactivator Interactions.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Bulanenkova.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by M. Novikova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulanenkova, S.S., Snezhkov, E.V., Potapov, V.K. et al. Chondroitin Sulfate Increases Transfection Efficiency by DNA–PEI Complexes. Mol. Genet. Microbiol. Virol. 34, 220–227 (2019). https://doi.org/10.3103/S0891416819040037

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0891416819040037

Keywords:

Navigation