Skip to main content
Log in

Development of Firehose Instability of a Magnetosonic Type in the Presence of High-Speed Proton Beams

  • SPACE PHYSICS
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract—

One of the varieties of firehose instability, whose cause is not the temperature anisotropy of plasma particles but the dynamic pressure of the beam, is considered. It is shown that such a generation mechanism can lead to an effective increase in low-frequency perturbations not only of the Alfven type but also of the magnetosonic type and also lead to instability not only in the finite and high-pressure plasma but also in a low-pressure plasma. The characteristics of magnetosonic waves that are generated during the development of instability are investigated. The growth rate, the maximum inclination angle of the wave vector, the propagation velocity of the perturbations, and the criterion for the development of instability are found. The influence of the beam temperature on the characteristics of the generated perturbations is studied. As an example of the development of such instability, the formation process of the turbulent region in front of the shock wave of the Earth, as well as before the shock wave from the supernova, is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. F. Aleksandrov, L. S. Bogdankevich, and A. P. Rukhadze, Principles of Plasma Electrodynamics (Vysshaya Shkola, Moscow, 1978; Springer-Verlag, Berlin, 1984).

  2. V. B. Baranov and K. V. Krasnobaev, Hydrodynamic Theory of Cosmic Plasma (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  3. A. A. Vedenov, E. P. Velikhov, and R. Z. Sagdeev, “Stability of plasma,” Sov. Phys. - Usp. 4, 332–369 (1961).

    ADS  MathSciNet  Google Scholar 

  4. A. A. Vedenov and R. Z. Sagdeev, “On some properties of a plasma with an anisotropic distribution of ion velocities in a magnetic field,” in Plasma Physics and the Problem of Controlled Thermonuclear Reactions (Akad. Nauk SSSR, Moscow, 1958), Vol. 3, pp. 278–284 [in Russian].

    Google Scholar 

  5. Yu. M. Voitenko, A. N. Krishtal’, S. V. Kuts, et al., “Generation of kinetic Alfvén waves in the transition region of the solar wind,” Geomagn. Aeron. 30, 901–907 (1990).

    ADS  Google Scholar 

  6. Yu. M. Voitenko, A. N. Krishtal’, P. P. Malovichko, et al., “Generation of kinetic Alfvén waves and their role in coronal loops heating,” Kinematika Fiz. Nebesnykh Tel 6 (2), 61–65 (1990).

    ADS  Google Scholar 

  7. Yu. M. Voitenko, A. N. Krishtal’, P. P. Malovichko, et al., “ Current instability and generation of kinetic Alfvén waves in the Earth’s magnetosphere,” Geomagn. Aeron. 30, 402–406 (1990).

    ADS  Google Scholar 

  8. Yu. M. Voitenko, A. A. Likhachev, and A. K. Yukhimuk, “ Low-frequency hydromagnetic waves of excitation in the solar wind,” Geofiz. Zh. 2 (6), 76–81 (1980).

    Google Scholar 

  9. N. A. Krall and A. W. Trivelpiece, Principles of Plasma Physics (McGraw-Hill, New York, 1973; Mir, Moscow, 1975).

  10. P. P. Malovichko, A. N. Krishtal’, and A. K. Yukhimuk, “Influence of temperature irregularities on the generation of kinetic Alfvén waves in the Earth’s magnetosphere,” Kinematics Phys. Celestial Bodies 22, 41–45 (2006).

    Google Scholar 

  11. P. P. Malovichko and A. K. Yukhimuk, “Current instability and generation of Alfvén waves in coronal loops,” Kinematika Fiz. Nebesnykh Tel 8 (1), 20–23 (1992).

    ADS  Google Scholar 

  12. B. A. Trubnikov, Plasma Theory (Energoatomizdat, Moscow, 1996) [in Russian].

    Google Scholar 

  13. A. Achterberg, “Mirror, firehose and cosmic-ray-driven instabilities in a high-beta plasma,” Mon. Not. R. Astron. Soc. 436, 705–717 (2013).

    ADS  Google Scholar 

  14. E. Amato and P. Blasi, “A kinetic approach to cosmic-ray-induced streaming instability at supernova shocks,” Mon. Not. R. Astron. Soc. 392, 1591–1600 (2009).

    ADS  Google Scholar 

  15. A. V. Artemyev, A. A. Petrukovich, R. Nakamura, et al., “Statistics of intense dawn-dusk currents in the Earth’s magnetotail,” J. Geophys. Res.: Space Phys. 120, 3804–3820 (2015).

    ADS  Google Scholar 

  16. M. B. Bavassano Cattaneo, C. Basile, G. Moreno, et al., “Evolution of mirror structures in the magnetosheath of Saturn from the bow shock to the magnetopause,” J. Geophys. Res.: Space Phys. 103, 11961–11972 (1998).

    ADS  Google Scholar 

  17. A. R. Bell, “Turbulent amplification of magnetic field and diffusive shock acceleration of cosmic rays,” Mon. Not. R. Astron. Soc. 353, 550–558 (2004).

    ADS  Google Scholar 

  18. A. R. Bell, “The interaction of cosmic rays and magnetized plasma,” Mon. Not. R. Astron. Soc. 358, 181–187 (2005).

    ADS  Google Scholar 

  19. C. Bonifazi and G. Moreno, “Reflected and diffuse ions backstreaming from the Earth’s bow shock 1. Basic properties,” J. Geophys. Res.: Space Phys. 86, 4397–4404 (1981).

    ADS  Google Scholar 

  20. C. Bonifazi and G. Moreno, “Reflected and diffuse ions backstreaming from the Earth’s bow shock 2. Origin,” J. Geophys. Res.: Space Phys. 86, 4405–4413 (1981).

    ADS  Google Scholar 

  21. D. Burgess, E. Möbius, and M. Scholer, “Ion acceleration at the Earth’s bow shock,” Space Sci. Rev. 173, 5–47 (2012).

    ADS  Google Scholar 

  22. A. M. Bykov, S. M. Osipov, and D. C. Ellison, “Cosmic ray current driven turbulence in shocks with efficient particle acceleration: The oblique, long-wavelength mode instability,” Mon. Not. R. Astron. Soc. 410, 39–52 (2011).

    ADS  Google Scholar 

  23. J. B. Cao, H. S. Fu, T. L. Zhang, et al., “Direct evidence of solar wind deceleration in the foreshock of the Earth,” J. Geophys. Res.: Space Phys. 114, A02207 (2009).

    ADS  Google Scholar 

  24. C. H. K. Chen, L. Matteini, A. A. Schekochihin, et al., “Multi-species measurements of the firehose and mirror instability thresholds in the solar wind,” Astrophys. J., Lett. 825, L26 (2016).

    ADS  Google Scholar 

  25. L. Chen and D. J. Wu, “Kinetic Alfvén wave instability driven by electron temperature anisotropy in high-plasmas,” Phys. Plasmas 17, 062107 (2010).

    ADS  Google Scholar 

  26. L. Chen, D. J. Wu, G. Q. Zhao, et al., “Excitation of kinetic Alfvén waves by fast electron beams,” Astrophys. J. 793, 13 (2014).

    ADS  Google Scholar 

  27. N. F. Cramer, The Physics of Alfvén Waves (Wiley, Berlin, 2001).

    Google Scholar 

  28. S. P. Gary, “Electromagnetic ion/ion instabilities and their consequences in space plasmas: A review,” Space Sci. Rev. 56, 373–415 (1991).

    ADS  Google Scholar 

  29. A. Hasegawa, “Drift mirror instability in the magnetosphere,” Phys. Fluids 12, 2642–2650 (1969).

    ADS  Google Scholar 

  30. P. Hellinger, “Comment on the linear mirror instability near the threshold,” Phys. Plasmas 14, 082105 (2007).

    ADS  Google Scholar 

  31. S. P. Joy, M. G. Kivelson, R. J. Walker, et al., “Mirror mode structures in the Jovian magnetosheath,” J. Geophys. Res.: Space Phys. 111, A12212 (2006). https://doi.org/10.1029/2006JA011985

    Article  ADS  Google Scholar 

  32. E. A. Kronberg, R. Bučík, S. Haaland, et al., “On the origin of the energetic ion events measured upstream of the Earth’s bow shock by STEREO, Cluster, and Geotail,” J. Geophys. Res.: Space Phys. 116, A02210 (2011).

    ADS  Google Scholar 

  33. A. N. Kryshtal, A. D. Voitsekhovska, S. V. Gerasimenko, et al., “Effect of small-scale Bernstein turbulence on low-frequency plasma waves in the preflare solar chromosphere,” Kinematics Phys. Celestial Bodies 33, 149–165 (2017).

    ADS  Google Scholar 

  34. M. W. Kunz, A. A. Schekochihin, C. H. K. Chen, et al., “Inertial-range kinetic turbulence in pressure-anisotropic astrophysical plasmas,” J. Plasma Phys. 81, 325810501 (2015).

    Google Scholar 

  35. Y. Liu, J. D. Richardson, J. W. Belcher, et al., “Plasma depletion and mirror waves ahead of interplanetary coronal mass ejections,” J. Geophys. Res.: Space Phys. 111, A09108 (2006).

    ADS  Google Scholar 

  36. P. P. Malovichko, “Stability of magnetic configurations in the solar atmosphere under temperature anisotropy conditions,” Kinematics Phys. Celestial Bodies 24, 236–241 (2008).

    ADS  Google Scholar 

  37. P. P. Malovichko, “Generation of low-frequency magnetic field disturbances in coronal loops by proton and electron beams,” Kinematics Phys. Celestial Bodies 26, 62–70 (2010).

    ADS  Google Scholar 

  38. P. P. Malovichko, “Properties of dispersive Alfvén waves: 1. Kinetics (very low, intermediate, and low density plasmas),” Kinematics Phys. Celestial Bodies 29, 269–284 (2013).

    ADS  Google Scholar 

  39. P. P. Malovichko, “Properties of dispersive Alfvén waves: 2. Kinetics (finite and high density plasmas),” Kinematics Phys. Celestial Bodies 30, 22–31 (2014).

    ADS  Google Scholar 

  40. P. P. Malovichko, “Properties of dispersive Alfvén waves: 3. Hydrodynamics (very low, intermediate, and low density plasmas),” Kinematics Phys. Celestial Bodies 30, 196–209 (2014).

    ADS  Google Scholar 

  41. P. P. Malovichko, “Properties of dispersive Alfvén waves: 4. Hydrodynamics (finite and high-pressure plasmas),” Kinematics Phys. Celestial Bodies 30, 223–233 (2014).

    ADS  Google Scholar 

  42. P. P. Malovichko, “Excitation of Alfvén turbulence in the solar wind ahead of the Earth bow shock by beams of high-velocity protons,” Kinematics Phys. Celestial Bodies 32, 86–99 (2016).

    ADS  Google Scholar 

  43. P. Malovichko, Y. Voitenko, and J. De Keyser, “Compensated-current instability of kinetic Alfvén waves,” Mon. Not. R. Astron. Soc. 452, 4236–4246 (2015).

    ADS  Google Scholar 

  44. P. P. Malovichko, Y. M. Voitenko, and J. De Keyser, “Non-resonant Alfvenic instability activated by high temperature of ion beams in compensated-current astrophysical plasmas,” Astron. Astrophys. 615, A169 (2018).

    ADS  Google Scholar 

  45. L. Matteini, P. Hellinger, B. E. Goldstein, et al., “Signatures of kinetic instabilities in the solar wind,” J. Geophys. Res.: Space Phys. 118, 2771–2782 (2013).

    ADS  Google Scholar 

  46. K. Meziane, M. Wilber, A. M. Hamza, et al., “Evidence for a high-energy tail associated with foreshock field-aligned beams,” J. Geophys. Res.: Space Phys. 112, A01101 (2007).

    ADS  Google Scholar 

  47. E. Mobius, M. Scholer, N. Sckopke, et al., “The distribution function of diffuse ions and the magnetic field power spectrum upstream of Earth’s bow shock,” Geophys. Res., Lett. 14, 681–684 (1987).

    ADS  Google Scholar 

  48. M. Oka, T. Terasawa, Y. Saito, and T. Mukai, “Field-aligned beam observations at the quasi-perpendicular bow shock: Generation and shock angle dependence,” J. Geophys. Res.: Space Phys. 110, A05101 (2005).

    ADS  Google Scholar 

  49. E. N. Parker, “Dynamical instability in an anisotropic ionized gas of low density,” Phys. Rev. 109, 1874–1876 (1958).

    ADS  MATH  Google Scholar 

  50. G. Paschmann, N. Sckopke, I. Papamastorakis, et al., “Characteristics of reflected and diffuse ions upstream from the Earth’s bow shock,” J. Geophys. Res.: Space Phys. 86, 4355–4364 (1981).

    ADS  Google Scholar 

  51. O. A. Pokhotelov, R. Z. Sagdeev, M. A. Balikhin, et al., “Nonlinear mirror waves in non-Maxwellian space plasmas,” J. Geophys. Res.: Space Phys. 113, A04225 (2008).

    ADS  Google Scholar 

  52. M. S. Rosin, A. A. Schekochihin, F. Rincon, et al., “A non-linear theory of the parallel firehose and gyrothermal instabilities in a weakly collisional plasma,” Mon. Not. R. Astron. Soc. 413, 7–38 (2011).

    ADS  Google Scholar 

  53. C. T. Russell, D. E. Huddleston, R. J. Strangeway, et al., “Mirror mode structures at the Galileo–Io flyby: Observations,” J. Geophys. Res.: Space Phys. 104, 17 471–17 477 (1999).

    ADS  Google Scholar 

  54. J. Soucek, E. Lucek, and I. Dandouras, “Properties of magnetosheath mirror modes observed by Cluster and their response to changes in plasma parameters,” J. Geophys. Res.: Space Phys. 113, A04203 (2008).

    ADS  Google Scholar 

  55. M. L. Stevens and J. C. Kasper, “A scale free analysis of magnetic holes at 1 AU,” J. Geophys. Res.: Space Phys. 112, A05109 (2007).

    ADS  Google Scholar 

  56. R. A. Treumann, L. Brostrom, J. LaBelle, et al., “The plasma wave signature of a "magnetic hole” in the vicinity of the magnetopause,” J. Geophys. Res.: Space Phys. 95, 19099–19114 (1990).

    ADS  Google Scholar 

  57. B. T. Tsurutani and P. Rodriguez, “Upstream waves and particles: An overview of ISEE results,” J. Geophys. Res.: Space Phys. 86, 4317–4324 (1981).

    ADS  Google Scholar 

  58. D. Winske and M. M. Leroy, “Diffuse ions produced by electromagnetic ion beam instabilities,” J. Geophys. Res.: Space Phys. 89, 2673–2688 (1984).

    ADS  Google Scholar 

  59. D. Winterhalter, M. Neugebauer, B. E. Goldstein, et al., “Ulysses field and plasma observations of magnetic holes in the solar wind and their relation to mirror-mode structures,” J. Geophys. Res.: Space Phys. 99, 23371–23381 (1994).

    ADS  Google Scholar 

  60. E. G. Zweibel and J. E. Everett, “Environments for magnetic field amplification by cosmic rays,” Astrophys. J. 709, 1412–1419 (2010).

    ADS  Google Scholar 

Download references

Funding

The work was supported in the framework of the planned institution funding of the National Academy of Sciences of Ukraine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. P. Malovichko.

Additional information

Translated by E. Seifina

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malovichko, P.P., Kyzyurov, Y.V. Development of Firehose Instability of a Magnetosonic Type in the Presence of High-Speed Proton Beams. Kinemat. Phys. Celest. Bodies 36, 114–128 (2020). https://doi.org/10.3103/S0884591320030058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591320030058

Keywords:

Navigation