Skip to main content
Log in

Kernel Fuzzy Kohonen’s Clustering Neural Network and It’s Recursive Learning

  • Published:
Automatic Control and Computer Sciences Aims and scope Submit manuscript

Abstract

The architecture of multilayer kernel clustering neuro-fuzzy system and algorithm of its self-learning are intended for the recovery of overlapped clusters in situations when the streams of observations are fed in the online mode is proposed. The designed system, based on the T. Kohonen’s self-organizing map, permits to recover linearly nonseparated data classes, processes information in an online mode, doesn’t suffer from the “curse of dimensionality” and is easy in implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xu, R. and Wunsch, D.C., Clustering, Hoboken, NJ: John Wiley and Sons, Inc., 2009.

    Google Scholar 

  2. Kohonen, T., Self-Organizing Maps, Berlin: Springer-Verlag, 1995.

    Book  MATH  Google Scholar 

  3. Haykin, S., Neural Networks. A Comprehensive Foundation, Upper Saddle River, N.J.: Prentice Hall, Inc., 1999.

    MATH  Google Scholar 

  4. Girolami, M., Mercer kernel-based clustering in feature space, IEEE Trans. Neural Networks, 2002, vol. 13, no. 3, pp. 780–784.

    Article  Google Scholar 

  5. Kim, D.-W., Lee, K., and Lee, K.H., Evaluation of the performance of clustering algorithms in kernel-based feature space, Pattern Recognit., 2002, no. 35, pp. 2267–2278.

    Article  Google Scholar 

  6. MacDonald, D. and Fyfe, C., Clustering in data space and feature space, ESANN'2002 Proc. European Symp. on Artificial Neural Networks, Bruges, 2002, pp. 137–142.

    Google Scholar 

  7. Camastra, F. and Verri, A., A novel kernel method for clustering, IEEE Trans. on Pattern Analysis and Machine Intelligence, 2005, no. 5, pp. 801–805.

    Article  Google Scholar 

  8. Hastie, T., Tibshirani, R., and Friedman, J., The Elements of Statistical Learning. Data Mining, Inference, and Prediction, New York: Springer Science & Business Media, LLC, 2009.

    MATH  Google Scholar 

  9. Kung, S.Y., Kernel Methods and Machine Learning, Cambridge: University Press, 2014.

    Book  MATH  Google Scholar 

  10. Zhang, D.-Q. and Chen, S.-C., Fuzzy clustering using kernel method, Proc. Int. Conf. on Control and Automation ICCA, 2002, pp. 162–163.

    Google Scholar 

  11. Zhang, D.-Q. and Chen, S.-C., Kernel based fuzzy and possibilistic c-means clustering, Proc. Int. Conf. Artificial Neural Networks ICAN 2003, 2003, pp. 122–125.

    Google Scholar 

  12. Miyamoto, S. and Mizutani, K., Fuzzy multiset space and c-means clustering using kernels with application to information retrieval, IFSA 2003: Fuzzy Sets and Systems—IFSA, 2003, pp. 387–395.

    Chapter  Google Scholar 

  13. Zhang, D.-Q. and Chen, S.-C., A novel kernelized fuzzy c-means algorithm with application in medical image segmentation, Artif. Intell. Med., 2004, vol. 32, no. 1, pp. 37–50.

    Article  Google Scholar 

  14. Du, W., Inoue, K., and Urahama, K., Robust kernel fuzzy clustering, FSKD 2005: Fuzzy Systems and Knowledge Discovery, 2005, pp. 454–461.

    Chapter  Google Scholar 

  15. Filippone, M., Camastra, F., Masulli, F., and Rovetta, S., A survey of kernel and spectral methods for clustering, Pattern Recognit., 2008, vol. 41, pp. 176–190.

    Article  MATH  Google Scholar 

  16. Havens, T.S., Bezdek, J.S., and Palaniswami, M., Incremental kernel fuzzy c-means, in Computational Intelligence, Madani, K., Eds., Berlin Heidelberg: Springer-Verlag, 2012, pp. 3–18.

    Chapter  Google Scholar 

  17. Bodyanskiy, Ye.V., Tyshchenko, O.K., and Deineko, A.O., An evolving radial basis neural network with adaptive learning of its parameters and architecture, Autom. Control Comput. Sci., 2015, vol. 49, no. 5, pp. 255–260.

    Article  Google Scholar 

  18. Bezdek, J.-C., Pattern Recognition with Fuzzy Objective Function Algorithms, New York: Plenum Press, 1981.

    Book  MATH  Google Scholar 

  19. Krishnapuram, R. and Keller, J.M., A possibilistic approach to clustering, IEEE Trans. Fuzzy Syst., 1993, vol. 1, no. 2, pp. 98–110.

    Article  Google Scholar 

  20. Krishnapuram, R. and Keller, J.M., The possibilistic c-means algorithm: Insights and recommendations, IEEE Trans. Fuzzy Syst., 1996, vol. 4, no. 3, pp. 385–393.

    Article  Google Scholar 

  21. Aggarwal, C.C., Data Mining, Cham: Springer, Int. Publ., 2015.

    Book  MATH  Google Scholar 

  22. Bifet, A., Adaptive Stream Mining: Pattern Learning and Mining from Evolving Data Streams, IOS Press, 2010.

    MATH  Google Scholar 

  23. Bodyanskiy, Ye., Deineko, A., Kutsenko, Y., and Zayika, O., Data streams fast EM-fuzzy clustering based on Kohonen`s self-learning, The 1th IEEE International Conference on Data Stream Mining & Processing (DSMP 2016): Proc. of Int. Conf., Lviv, 2016, pp. 309–313.

    Chapter  Google Scholar 

  24. Mulesa, P. and Perova, I., Fuzzy spacial extrapolation method using Manhattan metrics for tasks of medical data mining, Computer Science and Information Technologies CSIT'2015, Lviv, 2015, pp. 104–106.

    Google Scholar 

  25. Perova, I., Pliss, I., Churyumov, G., Eze, F., and Mahmoud, S.M.K., Neo-fuzzy approach for medical diagnostics tasks in online-mode, The 1th IEEE International Conference on Data Stream Mining & Processing (DSMP 2016): Proc. of Int. Conf., Lviv, 2016, pp. 34–38.

    Chapter  Google Scholar 

  26. Zahirniak, D., Chapman, R., Rogers, S., Suter, B., Kabrisky, M., and Piati, V., Pattern recognition using radial basis function network, Proc. 6th Ann. Aerospace Application of Artificial Intelligence Conf., Dayton: OH, 1990, pp. 249–260.

    Google Scholar 

  27. Vapnik, V.N. and Chervonenkis, A.Ja., Teoriya raspoznavaniya obrazov (statisticheskie problemy obucheniya) (Pattern Recognition Theory (The Nature of Statistical Learning Theory)), Moscow: Nauka, 1974.

    MATH  Google Scholar 

  28. Cortes, C. and Vapnik, V., Support vector networks, Mach. Learn., 1995, no. 20, pp. 273–297.

    MATH  Google Scholar 

  29. Specht, D.F., A general regression neural network, IEEE Trans. Neural Networks, 1991, vol. 2, pp. 568–576.

    Article  Google Scholar 

  30. Bodyanskiy, Ye., Computational Intelligence Techniques for Data Analysis, Bonn: GI, 2005, pp. 15–36.

    Google Scholar 

  31. Gorshkov, Ye., Kolodyazhniy, V., and Bodyanskiy, Ye., New recursive learning algorithm for fuzzy Kohonen clustering network, Proc. 17th Int. Workshop on Nonlinear Dynamics of Electronic Systems, Rapperswil, 2009, pp. 58–61.

    Google Scholar 

  32. Park, D.C. and Dagher, I., Gradient based fuzzy c-means (GBFCM) algorithm, Proc. IEEE Int. Conf. on Neural Networks, 1984, pp. 1626–1631.

    Google Scholar 

  33. Chung, F.-L. and Lee, T., Unsupervized fuzzy competitive learning with monotonically decreasing fuzziness, Proc. 1993 Int. Joint Conf. on Neural Networks, 1993, pp. 2929–2932.

    Google Scholar 

  34. Klawonn, F. and Hoppner, F., What is fuzzy about fuzzy clustering. Understanding and improving the concept of the fuzzifier, IDA 2003: Advances in Intelligent Data Analysis, 2003, pp. 254–264.

    Google Scholar 

  35. Kolchygin, B. and Bodyanskiy, Ye., Adaptive fuzzy clustering with a variable fuzzifier, Cybern. Syst. Anal., 2013, vol. 49, no. 3, pp. 176–181.

    Article  MathSciNet  MATH  Google Scholar 

  36. Deineko, A., Kutsenko, Y., Pliss, I., and Shalamov, M., Kernel evolving neural networks for sequential principal component analysis and its adaptive learning algorithm, Int. Scientific and Technical Conf. “Computer Science and Information Technologies:” Proc. of Int. Conf., Lviv, 2015, pp. 107–110.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Deineko.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bodyanskiy, Y.V., Deineko, A.O. & Eze, F.M. Kernel Fuzzy Kohonen’s Clustering Neural Network and It’s Recursive Learning. Aut. Control Comp. Sci. 52, 166–174 (2018). https://doi.org/10.3103/S0146411618030045

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0146411618030045

Keywords

Navigation