Skip to main content
Log in

Improvement of Methods for Predicting the Generation Capacity of Solar Power Plants: the Case of the Power Systems in the Republic of Crimea and City of Sevastopol

  • SOLAR POWER PLANTS
  • Published:
Applied Solar Energy Aims and scope Submit manuscript

Abstract

The construction and operation of large solar power plants (SPPs) and the dependence of their production on light and other meteorological factors leads to a strong dependence of the operation modes of the Republic of Crimea and Sevastopol power system on meteorological factors. Today, given that the share of solar power plants is about 30% of the total installed capacity, it is necessary to solve the problems that have a great impact on the power system operating modes. With large output capacity of the solar power plant, the operator has to give commands to turn off the generating equipment of thermal power plants. In power systems with a large share of solar generation, it is necessary to solve this problem by improving the generated power predicting methods, as it will reduce the dependence of operating modes on weather factors and increase the reliability of the power system. The paper discusses the use of hybrid predicting methods that imply taking into account the possibility of the weather scenarios simulation, advanced cloud-based image processing technology, and close-to-real-time cloud motion surveillance cameras. There was an experimental software created that selects coefficients of set configuration time series. In combination with the conservative methods, it makes predicting the SPP Perovo output more accurate. Taken together, the chosen methods of predicting solar power generation capacity in the power system of the Republic of Crimea and Sevastopol ensure not only stability of the power system as a whole, but also the maximum efficiency of power plants, allow to accelerate the integration of solar power plants into the power system, and have positive effects on the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Perminov, E.M., Energetics of the Republic of Crimea – the state and problems of development. New renewable energy - the choice of the Crimea, Energetik, 2014, no. 5, pp. 7–10.

  2. Usachov, A.M., Analysis of the dynamics of the global solar energy industry, Naukovedeniye, 2015, vol. 7, no. 4. http://naukovedenie.ru/PDF/10EVN415.pdf.

  3. Shirokov, A.V. and Shimon, N.S., Problems of power supply in the Republic of Crimea, Pozhar. Bezopasn.: Probl. Perspekt., 2017, vol. 1, no. 8, pp. 47–49.

    Google Scholar 

  4. Strebkov, D.S., Pendzhiev, A.M., and Mamedsahatov, B.D., Razvitie solnechnoj energetiki v Turkmenistane (The Development of Solar Energy in Turkmenistan), Moscow: GNU VIESKH, 2012.

  5. Tenenev, V.A., Strukturno-parametricheskaya optimizaciya i upravlenie (Structural-Parametric Optimization and Control), Izhevsk: IzhGTU im. Kalashnikova, M.T., 2014.

  6. Wind Energy in 2018. https://os1.ru/article/17801-vetroenergetika-v-2018-godu

  7. Kostin, V.N., Optimizatsionnye zadachi elektroenergetiki (Power Industry Optimization Tasks, The Study Guide), St. Petersburg: SZTY, 2003.

  8. Rusina, A.G., Application of rank models or structural forecasting, in 11 Mezhd. Forum Strategicheskikh Tekhnologii (Proceedings of the 11th International Forum for Strategic Technologies IFST 2016), Novosibirsk: Novosib Gos. Tekh. Univ., 2016, vol. 2, pp. 271–275. https://doi.org/10.1109/IFOST.2016.7884245

  9. Zhilina, N.A., Calculation of the load capacity of electric energy by the probabilistic-statistical method, Nauch. Vestn. Novosib. Tekh. Univ., 2014, no. 2 (55), pp. 176–182.

  10. Zhukov, V.P., Osipov, D.A., et al., Optimal control of the structure and operating conditions of integrated power systems, Vestn. Ivanov. Energet. Univ., 2016, no. 2, pp. 33–37.

  11. Stacenko, I.N., Bashta, A.I., Safonov, V.A., et al., Improving the energy characteristics of solar installations in the combined generation of heat and electricity, Nauch. Zap. Tavrich. Nats. Univ., Ser. Yurid. Nauki, 2008, vol. 21, no. 1 (60), pp. 195–202.

  12. Kuvshinov, V.V. and Morozova, N.V., Improving the energy characteristics of solar installations in the combined generation of heat and electricity, Izv. Vyssh. Uchebn. Zaved., Sev.-Kavk. Reg., Ser.:Tekh. Nauki, 2017, pp. 46–51.

    Google Scholar 

  13. Yakimovich, B.A. and Kuvshinov, V.V., The sixth technological structure, feasibility study on the use of solar thermophotovoltaic plants for power engineering, Sotsial.-Ekon. Upravl.: Teor. Prakt., 2017, no. 2 (31), pp. 109–111.

  14. Kuvshinov, V.V. and Kakushina, E.G., The increase in the total conversion rate due to the combined processing of heat and electrical energy, Elektrooborud.: Ekspluat. Remont, 2017, no. 2, pp. 61–67.

  15. Kuvshinov, V.V., Kakushina, E.G., and Chvanova, D.A., The use of photovoltaic plants to ensure the smooth operation of autonomous consumers, Energet. Ustanovki Tekhnol., 2016, vol. 2, no. 1, pp. 62–67.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank our colleagues at the Institute of Nuclear Energy and Industry, Sevastopol State University, for their continuous support.

Funding

This work was supported by an internal grant of Sevastopol State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Abd Ali.

Additional information

Published in discussion order

Translated by E. Kuznetsova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guryev, V.V., Yakimovich, B.A., Abd Ali, L.M. et al. Improvement of Methods for Predicting the Generation Capacity of Solar Power Plants: the Case of the Power Systems in the Republic of Crimea and City of Sevastopol. Appl. Sol. Energy 55, 242–246 (2019). https://doi.org/10.3103/S0003701X19040042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0003701X19040042

Keywords:

Navigation