Skip to main content
Log in

Mechanisms of radiation degradation of solar cells based on organic-inorganic perovskites

  • Solar Engineering Materials Science
  • Published:
Applied Solar Energy Aims and scope Submit manuscript

Abstract

The basic processes of perovskite radiation resistance are discussed for photo- and high-energy electron irradiation. It is shown that ionization of iodine ions and a staged mechanism of elastic scattering (upon intermediate scattering on light ions of an organic molecule) lead to the formation of a recombination center I i . The features of ionization degradation of interfaces with both planar and fractal structures are considered. A special type of fractality is identified, and its minimum possible level of photodegradation is predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Korshunov, F.P., Gatal’skii, G.V., and Ivanov, G.M., Radiatsionnye effekty v poluprovodnikovykh priborakh (Radiation Effects in Semiconductor Devices), Minsk: Nauka i tekhnika, 1978.

    Google Scholar 

  2. Vavilov, V.S., Gorin, B.M., Danilin, N.S., et al., Radiatsionnye metody v tverdotel’noi elektronike (Radiation Methods in Solid State Electronics), Moscow: Radio i svyaz’, 1990.

    Google Scholar 

  3. Bourgoin, J.C. and Khirouni, K., J. Space Explor., 2013, vol. 2, no. 3, pp.165–169.

    Google Scholar 

  4. Vasil’ev, A.M. and Landsman, A.P., Poluprovodnikovye fotopreobrazovateli (Semiconductor Phototransducers), Moscow: Sovetskoe radio, 1971.

    Google Scholar 

  5. Oksengendler, B.L. and Turaeva, N.N., Radiatsionnaya fizika kondensirovannykh sred (Radiation Physics for Condensed Mediums), Tashkent: Fan, 2006, vol.1.

  6. Kulakov, V.M., Latygin, E.A., Shakhovtsov, V.I., et al., Deistvie pronikayushchei radiatsii na izdeliya elektronnoi tekhniki (Radiation Penetration Effect onto Electronics), Moscow: Sovetskoe radio, 1980.

    Google Scholar 

  7. Itoh, N. and Stoneham, A.M., Materials Modification by Electronic Excitation, Cambridge Univ. Press, 2001.

    Google Scholar 

  8. Mitzi, D.B., J. Mater. Chem., 2004, vol. 14, p. 2355.

    Article  Google Scholar 

  9. Frost, J.M., Butler, K.T., Brivio, F., et al., Nano Lett., 2014, vol. 14, p. 2584.

    Article  Google Scholar 

  10. Yin, W.-J., Shi, T., and Yan, Y., J. Mater. Chem., 2015, vol. 3, pp. 8926–8942.

    Article  Google Scholar 

  11. Giorgi, G. and Yamashita, K.J., Mater. Chem. A, 2015, vol. 3, p. 8981.

    Article  Google Scholar 

  12. Ashurov, N.R., Oksengendler, B.L., Rashidova, S.Sh., and Zakhidov, A.A., Appl. Sol. Energy, 2016, vol. 52, no. 1, p.5.

    Article  Google Scholar 

  13. Physical Properties of High Temperature Semiconductors, Ginzburg, D.M., Ed., World Sci., 1990.

  14. Karimov, Z.I. and Oksengendler, B.L., Teoriya radiatsionno-fizicheskikh protsessov v vysokotemperaturnykh sverkhprovodnikakh (The Theory of Radiation-Physical Processes in High-Temperature Semiconductors), Tashkent: Uki-tuvchi, 1995.

    Google Scholar 

  15. Bokii, G.B., Kristallokhimiya (Crystal Chemistry), Moscow: Nauka, 1971.

    Google Scholar 

  16. Ansel’m, A.I., Vvedenie v teoriyu poluprovodnikov (Introduction to Semiconductors Theory), Moscow: Nauka, 1978.

    Google Scholar 

  17. Phillips, J C. and Lucovsky, G., Bonds and Bands in Semiconductors, 2nd ed., Momentum Press, 2009.

    Google Scholar 

  18. Bohm, D., Quantum Theory, Dover, 1989.

    MATH  Google Scholar 

  19. Zaikovskaya, M.A., Oksengendler, B.L., Tokhirov, K.R., and Yunusov, M.S., Subthreshold defect production in silicon, in Proc. Radiation Effect in Semiconductors. Yugoslavia, Dubrovnik. 1976. Conf. Ser., Bristol-London: Inst. of Physics, 1977, vol. 31, pp. 279–283.

    Google Scholar 

  20. Varley, J., J. Phys. Chem. Solidi, 1962, vol. 23, pp. 985–1005.

    Article  Google Scholar 

  21. Dexter, D., Phys. Rev., 1960, vol. 118, no. 4, pp. 934–935.

    Article  Google Scholar 

  22. Vinetskii, V.L. and Kholodar’, V.L., Statisticheskoe vzaimodeistvie elektronov i defektov v poluprovodnikakh (Statistical Interaction of Electrons and Defects in Semiconductors), Kiev: Naukova dumka, 1969.

    Google Scholar 

  23. Oksengendler, B.L. and Yunusov, M.S., Dokl. Akad. Nauk Uzbeksk. SSR, 1975, no. 6, pp. 25–27.

    Google Scholar 

  24. Yunusov, M.S., Zaykovskaya, M.A., Oksengendler, B.L., et al., Phys. Status Solidi A, 1976, vol. 35, pp. 145–149.

    Article  Google Scholar 

  25. Oksengendler, B.L., Maksimov, S.E., and Marasulov, M.B., Nanosyst.: Phys. Chem. Math., 2015, vol. 6, no. 6, pp. 825–832.

    Google Scholar 

  26. Oksengendler, B.L., Mechanisms and topology of radiation-stimulated atomic processes in solids, Extended Abstract of Doctoral Sci. (Phys.-Math.) Dissertation, Tashkent: Institute of Nuclear Physics AS RUz, 1990.

    Google Scholar 

  27. Schoonman, R., Chem. Phys. Lett., 2015, vol. 619, pp. 193–195.

    Article  Google Scholar 

  28. Khaoula, J., Hiba, D., Ferdinand, L., et al., Molecules, 2016, vol. 21, pp.885–897.

    Article  Google Scholar 

  29. Vinetskii, V.L. and Kholodar’, G.A., Radiatsionnaya fizika poluprovodnikov (Radiation Physics for Semiconductors), Kiev: Naukova dumka, 1979.

    Google Scholar 

  30. Du, M.H., J. Mater. Chem. A, 2014, vol. 2, pp. 9091–9093.

    Article  Google Scholar 

  31. Cheng, Y. and Mac Key, J. Phys. Rev., 1968, vol. 167, p.745.

    Article  Google Scholar 

  32. Oksengendler, B.L., Turaeva, N.N., Maksimov, S.E., and Dzhurabekova, F.G., JETP, 2010, vol. 111, no. 3, p.415.

    Article  Google Scholar 

  33. Zheng, L., Ma, Y., Chu, S., et al., Nanoscale, 2014, vol. 6, pp. 8171–8176.

    Article  Google Scholar 

  34. Oksengendler, B.L., Ashurov, N.R., Maksimov, S.E., et al., Euras. Chem.-Tecnol. J., 2016, vol. 18, no. 4, pp. 55–60.

    Google Scholar 

  35. Davison, S.G. and Levine, J.D., Surface states, in Solid State Physics, Ehrenreich, F. and Turnbull, S.D., Eds., New York, London: Acad. Press, 1970, vol.25.

  36. Oksengendler, B.L. and Turaeva, N.N., Dokl. Phys., 2010, vol. 55, pp. 477–479.

    Article  Google Scholar 

  37. Yadav, R.P., Manvendra Kumar, Mittal, A.K., and Pandey, A.C., Chaos, 2015, vol. 25, pp. 083115(1–9).

    Google Scholar 

  38. Maksimov, S.E., Ashurov, N.R., and Oksengendler, B.L., in Mater. 14-i Mezhdunar. nauch.-tekhn. konf. “Bystrozakalennye materialy i pokrytiya” 29-30 noyabrya 2016 MAI (Proc. 14th Int. Sci.-Techn. Conf. “Fast-Quenched Materials and Coatings”, Moscow Aviation Institute, Nov. 29–30, 2016), Moscow: Probel-2000, 2016, pp. 221–225.

    Google Scholar 

  39. Bhattacharjee, B.S., Goswami, D.K., et al., Nucl. Instrum. Methods Phys. Res. B, 2003, vol. 230, pp. 524–532.

    Article  Google Scholar 

  40. Goswami, D.K. and Dev, B.N., Phys. Rev. B, 2003, vol. 60, p. 033401.

    Article  Google Scholar 

  41. Hohenberg, P. and Kohn, W., Phys. Rev., 1964, vol. 136, no. 3B, pp. 864–871.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. L. Oksengendler.

Additional information

Original Russian Text © B.L. Oksengendler, N.R. Ashurov, S.E. Maksimov, M.I. Akhmedov, I.N. Nurgaliev, 2017, published in Geliotekhnika, 2017, No. 4, pp. 46–55.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oksengendler, B.L., Ashurov, N.R., Maksimov, S.E. et al. Mechanisms of radiation degradation of solar cells based on organic-inorganic perovskites. Appl. Sol. Energy 53, 326–333 (2017). https://doi.org/10.3103/S0003701X17040119

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0003701X17040119

Navigation