Skip to main content
Log in

Atherosclerosis Imaging: Intravascular Ultrasound

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Most acute coronary syndromes result from the rupture or erosion of high-risk plaques. Clinical imaging studies have shown that atherosclerotic plaque formation and rupture are widespread processes that are often asymptomatic. The rationale for atherosclerosis imaging is the in-vivo identification of high-risk lesions, which may subsequently lead to prevention of future cardiovascular events. Although intravascular ultrasound (IVUS) imaging studies demonstrated that echolucent appearance of the plaque and expansive (positive) remodelling are associated with unstable clinical presentation, these characteristics were not adequate for accurate plaque characterisation. Recent technical developments in ultrasound equipment and analytical methods, utilising several characteristics of the digitised ultrasound signal with radiofrequency analysis and elastography, promise accurate tissue characterisation. Other imaging modalities, including optical coherence tomography, also contribute to a more precise characterisation of the composition of atherosclerotic plaques. A non-imaging approach is the focal assessment of temperature differences using sensitive intravascular thermography catheters, presumably reflecting focal inflammatory changes of vulnerable lesions. Although the histological characteristics of the atheroma are critically important in the sequence of events leading to acute coronary syndromes, the clinical relevance of identifying these characteristics is not yet clear.

There is increasing evidence that identifying and treating individual culprit lesions may not be enough to prevent the ischaemic cardiac events in most patients, because the acute coronary syndrome is not a disease of a single site or a few discrete segments, but rather a systemic disease that involves the entire coronary tree. In addition to detection and quantitation of early coronary atherosclerosis and disease activity, accurate and reproducible methods could help to identify high-risk patients and allow serial monitoring during various therapeutic interventions. Serial IVUS imaging makes it possible to visualise the vessel wall that harbours the atheroma at different time points. Typically, serial IVUS allows the assessment of the percentage change in atheroma volume, with considerable statistical power to detect small changes. Using this methodology, aggressive lipid lowering by a high-dose statin agent has been shown to stop the progression of atherosclerosis, and a new mutant high-density lipoprotein complex was found to be effective in regressing atheroma burden.

Although intravascular ultrasound is very accurate for quantification of atheroma burden, widespread application and accurate and reproducible non-invasive imaging modalities are needed for large-scale risk assessment algorithms. Cardiovascular computed tomography is at the forefront of the non-invasive imaging modalities. Future prospective imaging studies will be necessary to identify focal or systemic characteristics of high-risk lesions and to demonstrate the relationship between plaque burden, biochemical markers and clinical events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. American Heart Association. 2002 Heart and Stroke Statistical Update. Dallas, TX: American Heart Association, 2001

    Google Scholar 

  2. Hasdai D, Behar S, Wallentin L, et al. A prospective survey of the characteristics, treatments and outcomes of patients with acute coronary syndromes in Europe and the Mediterranean basin; the Euro Heart Survey of Acute Coronary Syndromes (Euro Heart Survey ACS). Eur Heart J 2002; 23: 1190–201

    Article  PubMed  CAS  Google Scholar 

  3. Schoenhagen P, Ziada KM, Kapadia SR, et al. Extent and direction of arterial remodeling in stable and unstable coronary syndromes. Circulation 2000; 101: 598–603

    Article  PubMed  CAS  Google Scholar 

  4. Buffon A, Biasucci LM, Liuzzo G, et al. Widespread coronary inflammation in unstable angina. N Engl J Med 2002; 347: 5–12

    Article  PubMed  Google Scholar 

  5. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990's. Nature 1993; 362: 801–9

    Article  PubMed  CAS  Google Scholar 

  6. Libby P. Current concepts of the pathogenesis of the acute coronary syndromes. Circulation 2001; 104: 365–72

    Article  PubMed  CAS  Google Scholar 

  7. Davies MJ. Stability and instability: two faces of coronary atherosclerosis. Circulation 1996; 94: 2013–20

    Article  PubMed  CAS  Google Scholar 

  8. Fayad ZA, Fuster V. Clinical imaging of the high-risk or vulnerable atherosclerotic plaque. Circ Res 2001; 89: 305–16

    Article  PubMed  CAS  Google Scholar 

  9. Naghavi M, Libby P, Falk E, et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. Circulation 2003; 108: 1664–72

    Article  PubMed  Google Scholar 

  10. Tuzcu EM, Schoenhagen P. Acute coronary syndromes, plaque vulnerability, and carotid artery disease: the changing role of atherosclerosis imaging. J Am Coll Cardiol 2003; 42: 1033–6

    Article  PubMed  Google Scholar 

  11. Davies MJ, Thomas A. Thrombosis and acute coronary artery lesions in sudden cardiac ischemic death. N Engl J Med 1984; 310: 1137–40

    Article  PubMed  CAS  Google Scholar 

  12. Falk E. Plaque rupture with severe pre-existing stenosis precipitating coronary thrombosis. Characteristics of coronary atherosclerotic plaques underlying fatal occlusive thrombi. Br Heart J 1983; 50: 127–34

    CAS  Google Scholar 

  13. Davies MJ, Thomas AC. Plaque fissuring — the cause of acute myocardial infarction, sudden ischemic death and crescendo angina. Br Heart J 1985; 53: 363–73

    Article  PubMed  CAS  Google Scholar 

  14. Burke AP, Farb A, Malcom GT, et al. Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N Engl J Med 1997; 336: 1276–82

    Article  PubMed  CAS  Google Scholar 

  15. Glagov S, Weisenberg E, Zarins CK, et al. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 1987; 316: 1371–5

    Article  PubMed  CAS  Google Scholar 

  16. Schoenhagen P, Ziada KM, Vince DG, et al. Arterial remodeling and coronary artery disease: the concept of ‘dilated’ versus ‘obstructive’ coronary atherosclerosis. J Am Coll Cardiol 2001; 38: 297–306

    Article  PubMed  CAS  Google Scholar 

  17. Pasterkamp G, Schoneveld AH, van der Wal AC, et al. Relation of arterial geometry to luminal narrowing and histologic markers for plaque vulnerability: the remodeling paradox. J Am Coll Cardiol 1998; 32: 655–62

    Article  PubMed  CAS  Google Scholar 

  18. Varnava AM, Mills PG, Davies MJ. Relationship between coronary artery remodeling and plaque vulnerability. Circulation 2002; 105: 939–43

    Article  PubMed  Google Scholar 

  19. Burke AP, Kolodgie FD, Farb A, et al. Morphological predictors of arterial remodeling in coronary atherosclerosis. Circulation 2002; 105: 297–303

    Article  PubMed  Google Scholar 

  20. Pasterkamp G, Schoneveld AH, van der Wal AC, et al. Inflammation of the atherosclerotic cap and shoulder of the plaque is a common and locally observed feature in unruptured plaques of femoral and coronary arteries. Arterioscler Thromb Vasc Biol 1999; 19: 54–8

    Article  PubMed  CAS  Google Scholar 

  21. Moreno PR, Falk E, Palacios IF, et al. Macrophage infiltration in acute coronary syndromes: implications for plaque rupture. Circulation 1994; 90: 775–8

    Article  PubMed  CAS  Google Scholar 

  22. Moreno PR, Bernadi VH, Lopez-Cuellar J, et al. Macrophages, smooth muscle cells and tissue factor in unstable angina. Circulation 1996; 94: 3090–7

    Article  PubMed  CAS  Google Scholar 

  23. Shah PK, Falk E, Badimon JJ, et al. Human monocytederived macrophages induce collagen breakdown in fibrous caps of atherosclerotic plaques. Circulation 1995; 92: 1565–9

    PubMed  CAS  Google Scholar 

  24. Loree HM, Kamm RD, Stringfellow RG, et al. Effects of fibrous cap thickness on peak circumferential stress in model atherosclerotic vessels. Circ Res 1992; 71: 850–8

    Article  PubMed  CAS  Google Scholar 

  25. Cheng GC, Loree HM, Kamm RD, et al. Distribution of circumferential stress in ruptured and stable atherosclerotic lesions. Circulation 1993; 87: 1179–87

    Article  PubMed  CAS  Google Scholar 

  26. Lee RT, Schoen FJ, Loree HM, et al. Circumferential stress and matrix metalloproteinase 1 in human coronary atherosclerosis. Arterioscler Thromb Vasc Biol 1996; 16: 1070–3

    Article  PubMed  CAS  Google Scholar 

  27. Galis ZS, Sukhova GK, Lark MW, et al. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest 1994; 94: 2493–503

    Article  PubMed  CAS  Google Scholar 

  28. Sukhova GK, Shi GP, Simon DI, et al. Expression of the elastolytic cathepsins S and K in human atheroma and regulation of their production in smooth muscle cells. J Clin Invest 1998; 102:576–3

    Article  PubMed  CAS  Google Scholar 

  29. Gussenhoven EJ, Essed CE, Lancee CT, et al. Arterial wall characteristics determined by intravascular ultrasound imaging: an in vitro study. J Am Coll Cardiol 1989; 14: 947–52.

    Article  PubMed  CAS  Google Scholar 

  30. Hodgson JMcB, Reddy KG, Suneja R, et al. Intracoronary ultrasound imaging: correlation of plaque morphology with angiography, clinical syndrome and procedural results in patients undergoing coronary angioplasty. J Am Coll Cardiol 1993; 21: 35–44

    Article  PubMed  CAS  Google Scholar 

  31. Fukuda D, Kawarabayashi T, Tanaka A, et al. Lesion characteristics of acute myocardial infarction: an investigation with intravascularultrasound. Heart 2001; 85: 402–6

    Article  PubMed  CAS  Google Scholar 

  32. Smits PC, Pasterkamp G, de Jaegere PPT, et al. Angioscopic complex lesions are predominantly compensatory enlarged: an angioscopic and intracoronary ultrasound study. Cardiovasc Res 1999; 41: 458–64

    Article  PubMed  CAS  Google Scholar 

  33. Nakamura M, Nishikawa H, Mukai S, et al. Impact of coronary artery remodeling on clinical presentation of coronary artery disease: an intravascular ultrasound study. J Am Coll Cardiol 2001; 37: 63–9

    Article  PubMed  CAS  Google Scholar 

  34. Schoenhagen P, Vince DG, Ziada KM, et al. Relation of matrix-metalloproteinase 3 found in coronary lesion samples retrieved by directional coronary atherectomy to intravascular ultrasound observations on coronary remodeling. Am J Cardiol 2002; 89: 1354–9

    Article  PubMed  CAS  Google Scholar 

  35. Yamagishi M, Terashima M, Awano K, et al. Morphology of vulnerable coronary plaque: insights from follow-up of patients examined by intravascular ultrasound before and acute coronary syndrome. J Am Coll Cardiol 2000; 35: 106–11

    Article  PubMed  CAS  Google Scholar 

  36. Nair A, Kuban BD, Tuzcu EM, et al. Coronary plaque classification with intravascular ultrasound radiofrequency data analysis. Circulation 2002; 106: 2200–6

    Article  PubMed  Google Scholar 

  37. Kawasaki M, Takatsu H, Noda T, et al. Noninvasive quantitative tissue characterization and two-dimensional color-coded map of human atherosclerotic lesions using ultrasound integrated backscatter: comparison between histology and integrated backscatter images. J Am Coll Cardiol 2001; 38: 486–92

    Article  PubMed  CAS  Google Scholar 

  38. Takiuchi S, Rakugi H, Honda K,et al. Quantitative ultrasonic tissue characterization can identify high-risk atherosclerotic alteration in human carotid arteries. Circulation 2000; 102: 766–70

    Article  PubMed  CAS  Google Scholar 

  39. Stahr PM, Hofflinghaus T, Voigtlander T, et al. Discrimination of early/intermediate and advanced/complicated coronary plaque types by radiofrequency intravascular ultrasound analysis. Am J Cardiol 2002; 90: 19–23

    Article  PubMed  Google Scholar 

  40. de Korte CL, Pasterkamp G, van der Steen AF, et al. Characterization of plaque components with intravascular ultrasound elastography in human femoral and coronary arteries in vitro. Circulation 2000; 102: 617–23

    Article  PubMed  Google Scholar 

  41. Guillermo JT, Yabushita H, Houser SL, et al. Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography. Circulation 2003, 107, 113-19

    Google Scholar 

  42. Yabushita H, Bouma BE, Houser SL, et al. Characterization of human atherosclerosis by optical coherence tomography. Circulation 2002; 106: 1640–5

    Article  PubMed  Google Scholar 

  43. Casscells W, Hathorn B, David M, et al. Thermal detection of cellular infiltrates in living atherosclerotic plaques: possible implications for plaque rupture and thrombosis. Lancet 1996; 347: 1447–51

    Article  PubMed  CAS  Google Scholar 

  44. Stefanadis C, Diamantopoulos L, Vlachopoulos C, et al. Thermal heterogeneity within human atherosclerotic coronary arteries detected in vivo: a new method of detection by application of a special thermography catheter. Circulation 1999; 99: 1965–71

    Article  PubMed  CAS  Google Scholar 

  45. Frink RJ. Chronic ulcerated plaques: new insights into the pathogenesis of acute coronary disease. J Invasive Cardiol 1994; 6: 173–85

    PubMed  CAS  Google Scholar 

  46. Williams H, Johnson JL, Carson KG, et al. Characteristics of intact and ruptured atherosclerotic plaques in brachiocephalic arteries of apolipoprotein E knockout mice. Arterioscler Thromb Vasc Biol 2002; 22: 788–92

    Article  PubMed  CAS  Google Scholar 

  47. Burke AP, Kolodgie FD, Farb A, et al. Healed plaque ruptures and sudden coronary death: evidence that subclinical rupture has a role in plaque progression. Circulation 2001; 103: 934–40

    Article  PubMed  CAS  Google Scholar 

  48. Mann J, Davies MJ. Mechanisms of progression in native coronary artery disease: role of healed plaque disruption. Heart 1999; 82: 265–8

    PubMed  CAS  Google Scholar 

  49. Mazzone A, De Servi S, Ricevuti G, et al. Increased expression of neutrophil and monocyte adhesion molecules in unstable coronary artery disease. Circulation 1993; 88: 358–63

    Article  PubMed  CAS  Google Scholar 

  50. Biasucci LM, D'Onofrio G, Liuzzo G, et al. Intracellular neutrophil myeloperoxidase is reduced in unstable angina and acute myocardial infarction, but its reduction is not related to ischemia. J Am Coll Cardiol 1996; 27: 611–6

    Article  PubMed  CAS  Google Scholar 

  51. Ridker PM, Rifai N, Rose L, et al. Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N Engl J Med 2002; 347: 1557–65

    Article  PubMed  CAS  Google Scholar 

  52. Zhang R, Brennan ML, Fu X, et al. Association between myeloperoxidase levels and risk of coronary artery disease. JAMA 2001; 286: 2136–42

    Article  PubMed  CAS  Google Scholar 

  53. Koenig W, Sund M, Froehlich M, et al. C-reactive protein, a sensitive marker of inflammation, predicts future risk of coronary heart disease in initially healthy middle-aged men. Circulation 1999; 99: 237–42

    Article  PubMed  CAS  Google Scholar 

  54. Blake GJ, Ostfeld RJ, Yucel EK, et al. Soluble CD40 ligand levels indicate lipid accumulation in carotid atheroma: an in vivo study with high-resolution MRI. Arterioscler Thromb Vasc Biol 2003; 23: e1 1–4

    Article  CAS  Google Scholar 

  55. Lutgens E, Gijbels M, Smook M, et al. Transforming growth factor-beta mediates balance between inflammation and fibrosis during plaque progression. Arterioscler Thromb Vasc Biol 2002; 22: 975–82

    Article  PubMed  CAS  Google Scholar 

  56. Schoenhagen P, Nissen SE. Coronary atherosclerotic disease burden: an emerging endpoint in progression/ regression studies using intravascular ultrasound. Curr Drug Targets Cardiovasc Haematol Disord 2003; 3: 218–26

    Article  PubMed  CAS  Google Scholar 

  57. Nissen SE, Tuzcu EM, Schoenhagen P, et al. REVERSAL Investigators. Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis: a randomized controlled trial. JAMA 2004; 291: 1071–80.

    Article  PubMed  CAS  Google Scholar 

  58. Nissen SE, Tsunoda T, Tuzcu EM, et al. Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial. JAMA 2003; 290: 2292–300

    Article  PubMed  CAS  Google Scholar 

  59. Callister TQ, Raggi P, Cooil B, et al. Effect of HMG-CoA reductase inhibitors on coronary artery disease by electron-beam computed tomography. N Engl J Med 1998; 339: 1972–8

    Article  PubMed  CAS  Google Scholar 

  60. Achenbach S, Ropers D, Pohle K, et al. Influence of lipid-lowering therapy on the progression of coronary artery calcification. Circulation 2002; 106: 1077–82

    Article  PubMed  CAS  Google Scholar 

  61. Schroeder S, Kopp AF, Baumbach A, et al. Noninvasive detection and evaluation of atherosclerotic coronary plaques with multislice computed tomography. J Am Coll Cardiol 2001; 37: 1430–5

    Article  PubMed  CAS  Google Scholar 

  62. Schoenhagen P, Tuzcu EM, Stillman AE, et al. Non-invasive assessment of plaque morphology and remodeling in mildly stenotic coronary segments: comparison of 16-slice computed tomography and intravascular ultrasound. Coron Artery Dis 2003; 14: 459–62

    Article  PubMed  Google Scholar 

  63. Achenbach S, Moselewski F, Ropers D, et al. Detection of calcified and noncalcified coronary atherosclerotic plaque by contrast-enhanced, submillimeter multidetector spiral computed tomography: a segment-based comparison with intravascular ultrasound. Circulation 2004; 109 (Pt 1): 14–7

    Article  PubMed  Google Scholar 

  64. Fayad ZA, Fuster V, Nikolaou K, et al. Computed tomography and magnetic resonance imaging for non-invasive coronary angiography and plaque imaging: current and potential future concepts. Circulation 2002; 106: 2026–34

    Article  PubMed  Google Scholar 

  65. Kim WY, Stuber M, Börnert P, et al. Three-dimensional black-blood cardiac magnetic resonance coronary vessel wall imaging detects positive arterial remodeling in patients with nonsignificant coronary artery disease. Circulation 2002; 106: 296–9

    Article  PubMed  Google Scholar 

  66. de Groot E, Jukema JW, Montauben van Swijndregt AD, et al. B-Mode ultrasound assessment of pravastatin treatment effect on carotid and femoral artery walls and its correlation with coronary arteriogarphic findings: a report of the Regression Growth Evaluation Statin Study (REGRESS). J Am Coll Cardiol 1998; 31: 1561–7

    Article  PubMed  Google Scholar 

  67. Taylor AJ, Kent SM, Flaherty PJ, et al. ARBITER: Arterial Biology for the Investigation of the Treatment Effects of Reducing Cholesterol. A randomized trial comparing the effects of atorvastatin and pravastatin on carotid intima medial thickness. Circulation 2002; 106: 2055–60

    CAS  Google Scholar 

  68. Corti R, Fayad ZA, Fuster V, et al. Effects of lipid-lowering by simvastatin on human atherosclerotic lesions: a longitudinal study by high-resolution, noninvasive magnetic resonance imaging. Circulation 2001; 104: 249–52

    Article  PubMed  CAS  Google Scholar 

  69. Brennan ML, Penn MS, Van Lente F, et al. Prognostic value of myeloperoxidase in patients with chest pain. N Engl J Med 2003; 349: 1595–604

    Article  PubMed  CAS  Google Scholar 

  70. Rudd JHF, Warburton EA, Fryer TD, et al. Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation 2002; 105: 2708–11

    Article  PubMed  CAS  Google Scholar 

  71. Bonow RO. Primary prevention of cardiovascular disease. A call to action. Circulation 2002; 106: 3140–1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Murat Tuzcu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuzcu, E.M., Schoenhagen, P. Atherosclerosis Imaging: Intravascular Ultrasound. Drugs 64 (Suppl 2), 1–7 (2004). https://doi.org/10.2165/00003495-200464002-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200464002-00002

Keywords

Navigation