Skip to main content
Log in

A note on model structures on arbitrary Frobenius categories

  • Published:
Czechoslovak Mathematical Journal Aims and scope Submit manuscript

Abstract

We show that there is a model structure in the sense of Quillen on an arbitrary Frobenius category F such that the homotopy category of this model structure is equivalent to the stable category F as triangulated categories. This seems to be well-accepted by experts but we were unable to find a complete proof for it in the literature. When F is a weakly idempotent complete (i.e., every split monomorphism is an inflation) Frobenius category, the model structure we constructed is an exact (closed) model structure in the sense of Gillespie (2011).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Becker: Models for singularity categories. Adv. Math. 254 (2014), 187–232.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Beligiannis, I. Reiten: Homological and homotopical aspects of torsion theories. Mem. Am. Math. Soc. 188 (2007), 207 pages.

    MathSciNet  MATH  Google Scholar 

  3. T. Bühler: Exact categories. Expo. Math. 28 (2010), 1–69.

    Article  MathSciNet  MATH  Google Scholar 

  4. W. G. Dwyer, J. Spalinski: Homotopy theories and model categories, Handbook of Algebraic Topology. North-Holland, Amsterdam, 1995, pp. 73–126.

    MATH  Google Scholar 

  5. P. Gabriel, M. Zisman: Calculus of Fractions and Homotopy Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete 35, Springer, New York, 1967.

    Google Scholar 

  6. J. Gillespie: Model structures on exact categories. J. Pure Appl. Algebra 215 (2011), 2892–2902.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Gillespie: Exact model structures and recollements. J. Algebra 458 (2016), 265–306.

    Article  MathSciNet  MATH  Google Scholar 

  8. D. Happel: Triangulated Categories in the Representation Theory of Finite-Dimensional Algebras. London Mathematical Society Lecture Note Series 119, Cambridge University Press, Cambridge, 1988.

    Google Scholar 

  9. P. S. Hirschhorn: Model Categories and Their Localizations. Mathematical Surveys and Monographs 99, American Mathematical Society, Providence, 2003.

    Google Scholar 

  10. M. Hovey: Model Categories. Mathematical Surveys and Monographs 63, American Mathematical Society, Providence, 1999.

    Google Scholar 

  11. M. Hovey: Cotorsion pairs, model category structures, and representation theory. Math. Z. 241 (2002), 553–592.

    Article  MathSciNet  MATH  Google Scholar 

  12. B. Keller: Chain complexes and stable categories. Manuscr. Math. 67 (1990), 379–417.

    Article  MathSciNet  MATH  Google Scholar 

  13. S. MacLane: Categories for the Working Mathematician. Graduate Texts in Mathematics 5, Springer, New York, 1998.

    Google Scholar 

  14. D. G. Quillen: Homotopical Algebra. Lecture Notes in Mathematics 43, Springer, Berlin, 1967.

    Google Scholar 

  15. D. Quillen: Higher algebraic K-theory. I. Algebraic K-Theory I.. Proc. Conf. Battelle Inst. 1972, Lecture Notes in Mathematics 341, Springer, Berlin, 1973, pp. 85–147.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Wei Li.

Additional information

This project was partly supported by National Natural Science Foundation of China (Nos. 11671174 and 11571329).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, ZW. A note on model structures on arbitrary Frobenius categories. Czech Math J 67, 329–337 (2017). https://doi.org/10.21136/CMJ.2017.0582-15

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.21136/CMJ.2017.0582-15

Keywords

MSC 2010

Navigation