Skip to main content
Log in

A curvature identity on a 6-dimensional Riemannian manifold and its applications

  • Published:
Czechoslovak Mathematical Journal Aims and scope Submit manuscript

Abstract

We derive a curvature identity that holds on any 6-dimensional Riemannian manifold, from the Chern-Gauss-Bonnet theorem for a 6-dimensional closed Riemannian manifold. Moreover, some applications of the curvature identity are given. We also define a generalization of harmonic manifolds to study the Lichnerowicz conjecture for a harmonic manifold “a harmonic manifold is locally symmetric” and provide another proof of the Lichnerowicz conjecture refined by Ledger for the 4-dimensional case under a slightly more general setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Arias-Marco, O. Kowalski: Classification of 4-dimensional homogeneous weakly Einstein manifolds. Czech. Math. J. 65 (2015), 21–59.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Berger: Quelques formules de variation pour une structure riemannienne. Ann. Sci. Éc. Norm. Supér 3 (1970), 285–294. (In French.)

    Article  MathSciNet  MATH  Google Scholar 

  3. J. Berndt, F. Tricerri, L. Vanhecke: Generalized Heisenberg Groups and Damek Ricci Harmonic Spaces. Lecture Notes in Mathematics 1598, Springer, Berlin, 1995.

    Google Scholar 

  4. A. L. Besse: Manifolds All of Whose Geodesics Are Closed. Ergebnisse der Mathematik und ihrer Grenzgebiete 93, Springer, Berlin, 1978.

    Google Scholar 

  5. E. Boeckx, L. Vanhecke: Unit tangent sphere bundles with constant scalar curvature. Czech. Math. J. 51 (2001), 523–544.

    Article  MathSciNet  MATH  Google Scholar 

  6. P. Carpenter, A. Gray, T. J. Willmore: The curvature of Einstein symmetric spaces. Q. J. Math., Oxf. II. 33 (1982), 45–64.

    Article  MathSciNet  MATH  Google Scholar 

  7. S. H. Chun, J. H. Park, K. Sekigawa: H-contact unit tangent sphere bundles of Einstein manifolds. Q. J. Math. 62 (2011), 59–69.

    Article  MathSciNet  MATH  Google Scholar 

  8. E. T. Copson, H. S. Ruse: Harmonic Riemannian space. Proc. R. Soc. Edinb. 60 (1940), 117–133.

    Article  MathSciNet  MATH  Google Scholar 

  9. E. Damek, F. Ricci: A class of nonsymmetric harmonic Riemannian spaces. Bull. Am. Math. Soc., New. Ser. 27 (1992), 139–142.

    Article  MathSciNet  MATH  Google Scholar 

  10. Y. Euh, P. Gilkey, J. H. Park, K. Sekigawa: Transplanting geometrical structures. Differ. Geom. Appl. 31 (2013), 374–387.

    Article  MathSciNet  MATH  Google Scholar 

  11. Y. Euh, J. H. Park, K. Sekigawa: A curvature identity on a 4-dimensional Riemannian manifold. Result. Math. 63 (2013), 107–114.

    Article  MathSciNet  MATH  Google Scholar 

  12. Y. Euh, J. H. Park, K. Sekigawa: A generalization of a 4-dimensional Einstein manifold. Math. Slovaca 63 (2013), 595–610.

    Article  MathSciNet  MATH  Google Scholar 

  13. P. Gilkey, J. H. Park, K. Sekigawa: Universal curvature identities. Differ. Geom. Appl. 29 (2011), 770–778.

    Article  MathSciNet  MATH  Google Scholar 

  14. P. Gilkey, J. H. Park, K. Sekigawa: Universal curvature identities II. J. Geom. Phys. 62 (2012), 814–825.

    Article  MathSciNet  MATH  Google Scholar 

  15. P. Gilkey, J. H. Park, K. Sekigawa: Universal curvature identities III. Int. J. Geom. Methods Mod. Phys. 10 (2013), Article ID 1350025, 21 pages.

    Article  MathSciNet  MATH  Google Scholar 

  16. P. Gilkey, J. H. Park, K. Sekigawa: Universal curvature identities and Euler Lagrange formulas for Kähler manifolds. J. Math. Soc. Japan 68 (2016), 459–487.

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Gray, T. J. Willmore: Mean-value theorems for Riemannian manifolds. Proc. R. Soc. Edinb., Sect. A 92 (1982), 343–364.

    Article  MathSciNet  MATH  Google Scholar 

  18. P. Kreyssig: An introduction to harmonic manifolds and the Lichnerowicz conjecture. Available at arXiv:1007.0477v1.

  19. A. J. Ledger: Harmonic Spaces. Ph. D. Thesis, University of Durham, Durham, 1954.

    Google Scholar 

  20. A. J. Ledger: Symmetric harmonic spaces. J. London Math. Soc. 32 (1957), 53–56.

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Lichnerowicz: Sur les espaces riemanniens complétement harmoniques. Bull. Soc. Math. Fr. 72 (1944), 146–168. (In French.)

    Article  MATH  Google Scholar 

  22. A. Lichnerowicz: Géométrie des groupes de transformations. Travaux et recherches mathématiques 3, Dunod, Paris, 1958. (In French.)

    Google Scholar 

  23. Y. Nikolayevsky: Two theorems on harmonic manifolds. Comment. Math. Helv. 80 (2005), 29–50.

    Article  MathSciNet  MATH  Google Scholar 

  24. E. M. Patterson: A class of critical Riemannian metrics. J. Lond. Math. Soc., II. Ser. 23 (1981), 349–358.

    Article  MathSciNet  MATH  Google Scholar 

  25. T. Sakai: On eigen-values of Laplacian and curvature of Riemannian manifold. Tohoku Math. J., II. Ser. 23 (1971), 589–603.

    Article  MathSciNet  MATH  Google Scholar 

  26. K. Sekigawa: On 4-dimensional connected Einstein spaces satisfying the condition R(X, Y) · R = 0. Sci. Rep. Niigata Univ., Ser. A 7 (1969), 29–31.

    MathSciNet  MATH  Google Scholar 

  27. K. Sekigawa, L. Vanhecke: Volume-preserving geodesic symmetries on four-dimensional Kähler manifolds. Proc. Symp. Differential geometry, Pe˜niscola 1985, Lect. Notes Math. 1209, Springer, Berlin, 1986, pp. 275–291.

    Google Scholar 

  28. Z. I. Szabó: The Lichnerowicz conjecture on harmonic manifolds. J. Differ. Geom. 31 (1990), 1–28.

    Article  MathSciNet  MATH  Google Scholar 

  29. S. Tachibana: On the characteristic function of spaces of constant holomorphic curvature. Colloq. Math. 26 (1972), 149–155.

    MathSciNet  MATH  Google Scholar 

  30. A. G. Walker: On Lichnerowicz’s conjecture for harmonic 4-spaces. J. Lond. Math. Soc. 24 (1949), 21–28.

    Article  MathSciNet  MATH  Google Scholar 

  31. Y. Watanabe: On the characteristic function of harmonic Kählerian spaces. Tohoku Math. J., II. Ser. 27 (1975), 13–24.

    Article  MATH  Google Scholar 

  32. Y. Watanabe: On the characteristic functions of harmonic quaternion Kählerian spaces. Kōdai Math. Semin. Rep. 27 (1976), 410–420.

    Article  MATH  Google Scholar 

  33. Y. Watanabe: The sectional curvature of a 5-dimensional harmonic Riemannian manifold. Kodai Math. J. 6 (1983), 106–109.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunhee Euh.

Additional information

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF- 2014R1A1A2053413) and (NRF-2016R1D1A1B03930449).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Euh, Y., Park, J.H. & Sekigawa, K. A curvature identity on a 6-dimensional Riemannian manifold and its applications. Czech Math J 67, 253–270 (2017). https://doi.org/10.21136/CMJ.2017.0540-15

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.21136/CMJ.2017.0540-15

Keywords

MSC 2010

Navigation