Skip to main content
Log in

Smoothing functions and algorithm for nonsymmetric circular cone complementarity problems

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

There has been much interest in studying symmetric cone complementarity problems. In this paper, we study the circular cone complementarity problem (denoted by CCCP) which is a type of nonsymmetric cone complementarity problem. We first construct two smoothing functions for the CCCP and show that they are all coercive and strong semismooth. Then we propose a smoothing algorithm to solve the CCCP. The proposed algorithm generates an infinite sequence such that the value of the merit function converges to zero. Moreover, we show that the iteration sequence must be bounded if the solution set of the CCCP is nonempty and bounded. At last, we prove that the proposed algorithm has local superlinear or quadratical convergence under some assumptions which are much weaker than Jacobian nonsingularity assumption. Some numerical results are reported which demonstrate that our algorithm is very effective for solving CCCPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Alizadeh, D. Goldfarb: Second-order cone programming. Math. Program., 95 (2003), 3–51.

    Article  MathSciNet  Google Scholar 

  2. B. Alzalg: The Jordan algebraic structure of the circular cone. Oper. Matrices, 11 (2017), 1–21.

    Article  MathSciNet  Google Scholar 

  3. Y. Bai, X. Gao, G. Wang: Primal-dual interior-point algorithms for convex quadratic circular cone optimization. Numer. Algebra Control Optim., 5 (2015), 211–231.

    Article  MathSciNet  Google Scholar 

  4. Y. Bai, P. Ma, J. Zhang: A polynomial-time interior-point method for circular cone programming based on kernel functions. J. Ind. Manag. Optim., 12 (2016), 739–756.

    Article  MathSciNet  Google Scholar 

  5. J. Burke, S. Xu: A non-interior predictor-corrector path following algorithm for the monotone linear complementarity problem. Math. Program., 87 (2000), 113–130.

    Article  MathSciNet  Google Scholar 

  6. J.-S. Chen, S. Pan: A survey on SOC complementarity functions and solution methods for SOCPs and SOCCPs. Pac. J. Optim., 8 (2012), 33–74.

    MathSciNet  MATH  Google Scholar 

  7. J.-S. Chen, D. Sun, J. Sun: The SC1 property of the squared norm of the SOC Fischer-Burmeister function. Oper. Res. Lett., 36 (2008), 385–392.

    Article  MathSciNet  Google Scholar 

  8. L. Chen, C. Ma: A modified smoothing and regularized Newton method for monotone second-order cone complementarity problems. Comput. Math. Appl., 61 (2011), 1407–1418.

    Article  MathSciNet  Google Scholar 

  9. X.D. Chen, D. Sun, J. Sun: Complementarity functions and numerical experiments on some smoothing Newton methods for second-order-cone complementarity problems. Comput. Optim. Appl., 25 (2003), 39–56.

    Article  MathSciNet  Google Scholar 

  10. X. Chi, S. Liu: A non-interior continuation method for second-order cone programming. Optimization, 58 (2009), 965–979.

    Article  MathSciNet  Google Scholar 

  11. X. Chi, S. Liu: A one-step smoothing Newton method for second-order cone programming. J. Comput. Appl. Math., 223 (2009), 114–123.

    Article  MathSciNet  Google Scholar 

  12. X. Chi, J. Tao, Z. Zhu, F. Duan: A regularized inexact smoothing Newton method for circular cone complementarity problem. Pac. J. Optim., 13 (2017), 197–218.

    MathSciNet  MATH  Google Scholar 

  13. X. Chi, Z. Wan, Z. Zhu, L. Yuan: A nonmonotone smoothing Newton method for circular cone programming. Optimization, 65 (2016), 2227–2250.

    Article  MathSciNet  Google Scholar 

  14. X. Chi, H. Wei, Z. Wan, Z. Zhu: Smoothing Newton algorithm for the circular cone programming with a nonmonotone line search. Acta Math. Sci., Ser. B, Engl. Ed., 37 (2017), 1262–1280.

    Article  MathSciNet  Google Scholar 

  15. F. Facchinei, C. Kanzow: Beyond monotonicity in regularization methods for nonlinear complementarity problems. SIAM J. Control Optim., 37 (1999), 1150–1161.

    Article  MathSciNet  Google Scholar 

  16. L. Fang, Z. Feng: A smoothing Newton-type method for second-order cone programming problems based on a new smoothing Fischer-Burmeister function. Comput. Appl. Math., 30 (2011), 569–588.

    Article  MathSciNet  Google Scholar 

  17. M. Fukushima, Z.-Q. Luo, P. Tseng: Smoothing functions for second-order-cone complementarity problems. SIAM J. Optim., 12 (2001), 436–460.

    Article  MathSciNet  Google Scholar 

  18. S. Hayashi, N. Yamashita, M. Fukushima: A combined smoothing and regularization method for monotone second-order cone complementarity problems. SIAM J. Optim., 15 (2005), 593–615.

    Article  MathSciNet  Google Scholar 

  19. Z.-H. Huang, T. Ni: Smoothing algorithms for complementarity problems over symmetric cones. Comput. Optim. Appl., 45 (2010), 557–579.

    Article  MathSciNet  Google Scholar 

  20. P. Jin, C. Ling, H. Shen: A smoothing Levenberg-Marquardt algorithm for semi-infinite programming. Comput. Optim. Appl., 60 (2015), 675–695.

    Article  MathSciNet  Google Scholar 

  21. Y.-F. Ke, C.-F. Ma, H. Zhang: The relaxation modulus-based matrix splitting iteration methods for circular cone nonlinear complementarity problems. Comput. Appl. Math., 37 (2018), 6795–6820.

    Article  MathSciNet  Google Scholar 

  22. B. Kheirfam, G. Wang: An infeasible full NT-step interior point method for circular optimization. Numer. Algebra Control Optim., 7 (2017), 171–184.

    Article  MathSciNet  Google Scholar 

  23. W. Liu, C. Wang: A smoothing Levenberg-Marquardt method for generalized semi-infinite programming. Comput. Appl. Math., 32 (2013), 89–105.

    Article  MathSciNet  Google Scholar 

  24. M. S. Lobo, L. Vandenberghe, S. Boyd, H. Lebret: Applications of second-order cone programming. Linear Algebra Appl., 284 (1998), 193–228.

    Article  MathSciNet  Google Scholar 

  25. P. Ma, Y. Bai, J.-S. Chen: A self-concordant interior point algorithm for nonsymmetric circular cone programming. J. Nonlinear Convex Anal., 17 (2016), 225–241.

    MathSciNet  MATH  Google Scholar 

  26. X.-H. Miao, S. Guo, N. Qi, J.-S. Chen: Constructions of complementarity functions and merit functions for circular cone complementarity problem. Comput. Optim. Appl., 63 (2016), 495–522.

    Article  MathSciNet  Google Scholar 

  27. X.-H. Miao, J. Yang, S. Hu: A generalized Newton method for absolute value equations associated with circular cones. Appl. Math. Comput., 269 (2015), 155–168.

    MathSciNet  MATH  Google Scholar 

  28. R. S. Palais, C.-L. Terng: Critical Point Theory and Submanifold Geometry. Lecture Notes in Mathematics 1353. Springer, Berlin, 1988.

    Google Scholar 

  29. M. Pirhaji, M. Zangiabadi, H. Mansouri: A path following interior-point method for linear complementarity problems over circular cones. Japan J. Ind. Appl. Math., 35 (2018), 1103–1121.

    Article  MathSciNet  Google Scholar 

  30. L. Qi, J. Sun: A nonsmooth version of Newton's method. Math. Program., 58 (1993), 353–367.

    Article  MathSciNet  Google Scholar 

  31. L. Qi, D. Sun, G. Zhou: A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequalities. Math. Program., 87 (2000), 1–35.

    Article  MathSciNet  Google Scholar 

  32. D. Sun, J. Sun: Strong semismoothness of Fischer-Burmeister SDC and SOC complementarity functions. Math. Program., 103 (2005), 575–581.

    Article  MathSciNet  Google Scholar 

  33. J. Tang, L. Dong, J. Zhou, L. Sun: A smoothing-type algorithm for the second-order cone complementarity problem with a new nonmonotone line search. Optimization, 64 (2015), 1935–1955.

    Article  MathSciNet  Google Scholar 

  34. J. Tang, G. He, L. Dong, L. Fang, J. Zhou: A smoothing Newton method for the second-order cone complementarity problem. Appl. Math., Praha, 58 (2013), 223–247.

    Article  MathSciNet  Google Scholar 

  35. A. Yoshise: Interior point trajectories and a homogeneous model for nonlinear complementarity problems over symmetric cones. SIAM J. Optim., 17 (2006), 1129–1153.

    Article  MathSciNet  Google Scholar 

  36. J. Zhang, J. Chen: A smoothing Levenberg-Marquardt type method for LCP. J. Comput. Math. 22 (2004), 735–752.

    MathSciNet  MATH  Google Scholar 

  37. J. Zhou, J.-S. Chen: Properties of circular cone and spectral factorization associated with circular cone. J. Nonlinear Convex Anal., 14 (2013), 807–816.

    MathSciNet  MATH  Google Scholar 

  38. J. Zhou, J.-S. Chen, H.-F. Hung: Circular cone convexity and some inequalities associated with circular cones. J. Inequal. Appl. 2013 (2013), Article ID 571, 17 pages.

    MATH  Google Scholar 

  39. J. Zhou, J.-S. Chen, B. S. Mordukhovich: Variational analysis of circular cone programs. Optimization, 64 (2015), 113–147.

    Article  MathSciNet  Google Scholar 

  40. J. Zhou, J. Tang, J.-S. Chen: Parabolic second-order directional differentiability in the Hadamard sense of the vector-valued functions associated with circular cones. J. Optim. Theory Appl., 172 (2017), 802–823.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We are very grateful to the referees for their valuable comments on the paper, which have considerably improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingyong Tang.

Additional information

This work was supported by the National Natural Science Foundation of China (11601466), Natural Science Foundation of Henan Province (202300410343) and the Training Plan of Young Key Teachers in Universities of Henan Province (2018GGJS096).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, J., Chen, Y. Smoothing functions and algorithm for nonsymmetric circular cone complementarity problems. Appl Math 67, 209–231 (2022). https://doi.org/10.21136/AM.2021.0129-20

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.21136/AM.2021.0129-20

Keywords

MSC 2020

Navigation