Skip to main content
Log in

Effect of CO2 enrichment on the glucosinolate contents under different nitrogen levels in bolting stem of Chinese kale (Brassica alboglabra L.)

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

The effects of CO2 enrichment on the growth and glucosinolate (GS) concentrations in the bolting stem of Chinese kale (Brassica alboglabra L.) treated with three nitrogen (N) concentrations (5, 10, and 20 mmol/L) were investigated. Height, stem thickness, and dry weights of the total aerial parts, bolting stems, and roots, as well as the root to shoot ratio, significantly increased as CO2 concentration was elevated from 350 to 800 μl/L at each N concentration. In the edible part of the bolting stem, 11 individual GSs were identified, including 7 aliphatic and 4 indolyl GSs. GS concentration was affected by the elevated CO2 concentration, N concentration, and CO2×N interaction. At 5 and 10 mmol N/L, the concentrations of aliphatic GSs and total GSs significantly increased, whereas those of indolyl GSs were not affected, by elevated atmospheric CO2. However, at 20 mmol N/L, elevated CO2 had no significant effects on the concentrations of total GSs and total indolyl GSs, but the concentrations of total aliphatic GSs significantly increased. Moreover, the bolting stem carbon (C) content increased, whereas the N and sulfur (S) contents decreased under elevated CO2 concentration in the three N treatments, resulting in changes in the C/N and N/S ratios. Also the C/N ratio is not a reliable predictor of change of GS concentration, while the changes in N and S contents and the N/S ratio at the elevated CO2 concentration may influence the GS concentration in Chinese kale bolting stems. The results demonstrate that high nitrogen supply is beneficial for the growth of Chinese kale, but not for the GS concentration in bolting stems, under elevated CO2 condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad, G., Jan, A., Arif, M., Jan, M.T., Khattak, R.A., 2007. Influence of nitrogen and sulfur fertilization on quality of canola(Brassica napus L.) underrainfed conditions. J. Zhejiang Univ. Sci. B, 8(10):731–737. [doi:10.1631/jzus.2007.B0731]

    Article  PubMed  CAS  Google Scholar 

  • Aires, A., Rosa, E., Carvalho, R., 2006. Effect of nitrogen and sulfur fertilization on glucosinolates in the leaves and roots of broccoli sprouts (Brassica oleracea var. italica). J. Sci. Food Agric., 86(10):1512–1516. [doi:10.1002/jsfa.2535]

    Article  CAS  Google Scholar 

  • Amthor, J.S., 2001. Effects of atmospheric CO2 concentration on wheat yield: review of results from experiments using various approaches to control CO2 concentration. Field Crops Res., 73(1):1–34. [doi:10.1016/S0378-4290(01)00179-4]

    Article  Google Scholar 

  • Baik, H.Y., Juvik, J.A., Jeffery, E.H., Wallig, M.A., Kushad, M., Klein, B.P., 2003. Relating glucosinolate content and flavor of broccoli cultivars. J. Food Sci., 68(3):1043–1050. [doi:10.1111/j.1365-2621.2003.tb08285.x]

    Article  CAS  Google Scholar 

  • Baxter, R., Ashenden, T.W., Farrar, J.F., 1994. Effects of elevated carbon dioxide on three grass species from montane pasture. II. Nutrient uptake, allocation and efficiency of use. J. Exp. Bot., 45(9):1267–1278. [doi:10.1093/jxb/45.9.1267]

    Article  CAS  Google Scholar 

  • Bazzaz, F.A., 1990. The response of natural ecosystems to the rising global CO2 levels. Annu. Rev. Ecol. Syst., 21(1): 167–196. [doi:10.1146/annurev.es.21.110190.001123]

    Article  Google Scholar 

  • Bidart-Bouzat, M.G., Mithen, R., Berenbaum, M.R., 2005. Elevated CO2 influences herbivory-induced defense responses of Arabidopsis thaliana. Oecologia, 145(3):415–424. [doi:10.1007/s00442-005-0158-5]

    Article  PubMed  Google Scholar 

  • Bones, A.M., Rossiter, J.T., 1996. The myrosinase glucosinolates system, its organization and biochemistry. Plant Physiol., 97(1):194–208. [doi:10.1111/j.1399-3054.1996.tb00497.x]

    Article  CAS  Google Scholar 

  • Bryant, J.P., Chapin, F.S., Klein, D.R., 1983. Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos, 40(3):357–368. [doi:10.2307/3544308]

    Article  CAS  Google Scholar 

  • Caswell, H., 2004. Advances in Ecological Research. Academic Press, New York.

    Google Scholar 

  • Chen, R.Y., Liu, H.C., Song, C.Z., Sun, G.W., 2005. Effect of nitrogen nutrient on the growth and quality of Chinese kale. Trans. CSAE, 21(S):143–146 (in Chinese).

    Google Scholar 

  • Chew, F.S., 1988. Biologically Active Natural Products. American Chemical Society Symposium, Washington DC.

    Google Scholar 

  • Cotrufo, M.F., Ineson, P., Scott, A., 1998. Elevated CO2 reduces the nitrogen concentration of plant tissues. Glob. Change Biol., 4(1):43–54. [doi:10.1046/j.1365-2486.1998.00101.x]

    Article  Google Scholar 

  • Das, M., Pal, M., Zaidi, P.H., Raj, A., Sengupta, U.K., 2002. Stage sensitivity of mung bean (Vigna radiata L. Wilczek) to an elevated level of carbon dioxide. J. Agron. Crop Sci., 188(4):219–224. [doi:10.1046/j.1439-037X.2002.00556.x]

    Article  Google Scholar 

  • Epron, D., Liozon, R., Mousseau, M., 1996. Effects of elevated CO2 concentration on leaf characteristics and photosynthetic capacity of beech (Fagus sylvatica) during the growing season. Tree Physiol., 16:425–432.

    PubMed  CAS  Google Scholar 

  • Fahey, J.W., Zhang, Y., Talalay, P., 1997. Broccoli sprouts: an exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proc. Natl. Acad. Sci. USA, 94(19):10367–10372. [doi:10.1073/pnas.94.19.10367]

    Article  PubMed  CAS  Google Scholar 

  • Fenwick, G.R., Heaney, R.K., Mullin, W.J., 1983. Glucosinolates and their breakdown products in food and food plants. CRC Crit. Rev. Food Sci. Nutr., 18(2):123–201.

    Article  CAS  Google Scholar 

  • Fenwick, G.R., Heaney, R.K., Mawson, R., 1989. Toxicants of Plant Origin. CRC Press, Florida.

    Google Scholar 

  • Gijzen, M., McGregor, I., Seguin-Swartz, G., 1989. Glucosinolate uptake by developing rapeseed embryos. Plant Physiol., 89(1):260–263. [doi:10.1104/pp.89.1.260]

    Article  PubMed  CAS  Google Scholar 

  • Habash, D.Z., Paul, M.J., Parry, M.A., Keys, A.J., Lawlor, D.W., 1995. Increased capacity for photosynthesis in wheat grown at elevated CO2: the relationship between electron-transport and carbon metabolism. Planta, 197(3):482–489. [doi:10.1007/BF00196670]

    Article  CAS  Google Scholar 

  • Halkier, B.A., Du, L., 1997. The biosynthesis of glucosinolates. Trends Plant Sci., 2(11):425–431. [doi:10.1016/S1360-1385(97)90026-1]

    Article  Google Scholar 

  • He, H.J., Chen, H., Schnitzler, W.H., 2002. Glucosinolate composition and contents in Brassica vegetables. Sci. Agric. Sinica, 35(2):192–197 (in Chinese).

    CAS  Google Scholar 

  • Heaney, R.K., Fenwick, G.R., 1995. Natural toxins and protective factors in Brassica species, including rapeseed. Nat. Toxins, 3(4):233–237. [doi:10.1002/nt.2620030412]

    Article  PubMed  CAS  Google Scholar 

  • Hesse, H., Nikiforova, V., Gakiere, B., Hoefgen, R., 2004. Molecular analysis and control of cysteine biosynthesis: integration of nitrogen and sulphur metabolism. J. Exp. Bot., 55(401):1283–1292. [doi:10.1093/jxb/erh136]

    Article  PubMed  CAS  Google Scholar 

  • Himanen, S.J., Nissinen, A., Auriola, S., Poppy, G.M., Stewart, C.N., Holopainen, J.K., Nerg, A.M., 2008. Constitutive and herbivore-inducible glucosinolate concentrations in oilseed rape (Brassica napus) leaves are not affected by Bt Cry1Ac insertion but change under elevated atmospheric CO2 and O3. Planta, 227(2):427–437. [doi:10.1007/s00425-007-0629-5]

    Article  PubMed  CAS  Google Scholar 

  • Hoagland, D.R., Arnon, D.I., 1938. The Water Culture Method for Growing Plants Without Soil, Circ 347. California Agricultural Experiment Station, Berkley.

    Google Scholar 

  • Holst, B., Williamson, G., 2004. A critical review of the bioavailability of glucosinolates and related compounds. Nat. Prod. Rep., 21(3):425–447. [doi:10.1039/b204039p]

    Article  PubMed  CAS  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change), 2007. Climate Change 2007. Cambridge University Press, Cambridge.

    Google Scholar 

  • Islam, M.S., Matsui, T., Yoshida, Y., 1996. Effect of carbon dioxide enrichment on physico-chemical and enzymatic changes in tomato fruits at various stages of maturity. Sci. Hortic., 65(2–3):137–149. [doi:10.1016/0304-4238(95)00867-5]

    Article  CAS  Google Scholar 

  • Karowe, D.N., Seimens, D.H., Mitchell-olds, T., 1997. Species-specific response of glucosinolate content to elevated atmospheric CO2. J. Chem. Ecol., 23(11):2569–2582. [doi:10.1023/B:JOEC.0000006667.81616.18]

    Article  CAS  Google Scholar 

  • Kiddle, G., Bennett, R.N., Botting, N.P., Davidson, N.E., Robertson, A.A.B., Wallsgrove, R.M., 2001. High performance liquid chromatography separation of natural and synthetic desulfoglucosinolates and their chemical validation by spectroscopic, NMR and CI-MS methods. Phytochem. Anal., 12(4):226–242. [doi:10.1002/pca.589]

    Article  PubMed  CAS  Google Scholar 

  • Kim, H.Y., Lieffering, M., Miura, S., Kobayashi, K., Okada, M., 2001. Growth and nitrogen uptake of CO2-enriched rice under field conditions. New Phytol., 150(2):223–229. [doi:10.1046/j.1469-8137.2001.00111.x]

    Article  CAS  Google Scholar 

  • Kim, S.J., Matsuo, T., Watanabe, M., Watanabe, Y., 2002. Effect of nitrogen and sulphur application on the glucosinolate content in vegetable turnip rape (Brassica rapa L.). Soil Sci. Plant Nutr., 48(1):43–49.

    CAS  Google Scholar 

  • Kimball, B.A., Pinter, J.P.J., Garcia, R.L., LaMorte, R.L., Wall, G.W., Hunsaker, D.J., Wechsung, G., Wechsung, F., Kartschall, T., 1995. Productivity and water use of wheat under free-air CO2 enrichment. Global Change Biol., 1(6):429–442. [doi:10.1111/j.1365-2486.1995.tb00041.x]

    Article  Google Scholar 

  • Kimball, B.A., Zhu, J.G., Cheng, L., Kobayashi, K., Bindi, M., 2002. Responses of agricultural crops to free-air CO2 enrichment. J. Appl. Ecol., 13(10):1323–1338 (in Chinese).

    CAS  Google Scholar 

  • Kobayashi, K., Lieffering, M., Kim, H.Y., 2001. Structure and Function in Agroecosystem Design and Management. CRC Press, Florida.

    Google Scholar 

  • Kohlmeier, L., Su, L., 1997. Cruciferous vegetable consumption and colorectal cancer risk: meta-analysis of the epidemiological evidence. FASEB J., 11(3):2141.

    Google Scholar 

  • Kushad, M.M., Brown, A.F., Kurilich, A.C., Juvik, J.A., Klein, B.P., Wallig, M.A., Jerrery, E.H., 1999. Variation of glucosinolates in vegetables crops of Brassica oleracea. J. Agric. Food Chem., 47(4):1541–1548. [doi:10.1021/jf980985s]

    Article  PubMed  CAS  Google Scholar 

  • La, G.X., Fang, P., Li, Y.J., Wang, Y., 2008. Determination of desulpho-glucosinolates in bolting stems of Chinese kale by liquid chromatography-mass spectrometry. Journal of Zhejiang University (Agric. Life Sci.), 34(5):557–563 (in Chinese). [doi:10.3785/j.issn.1008-9209.2008.05.012]

    CAS  Google Scholar 

  • Larigauderie, A., Hilbert, D.W., Oechel, W.C., 1988. Effect of CO2 enrichment and nitrogen availability on resource acquisition and resource allocation in a grass, Bromus mollis. Oecologia, 77(4):544–549. [doi:10.1007/BF00377272]

    Article  Google Scholar 

  • Li, J., Zhou, J.M., Duan, Z.Q., Du, C.W., Wang, H.Y., 2007. Effect of CO2 enrichment on the growth and nutrient uptake of tomato seedlings. Pedosphere, 17(3):343–351. [doi:10.1016/S1002-0160(07)60041-1]

    Article  CAS  Google Scholar 

  • Louda, S., Mole, S., 1991. Herbivores: Their Interactions with Secondary Plant Metabolites, 2nd Ed. Academic Press, New York.

    Google Scholar 

  • Lu, R.K., 1999. Analytical Methods of Soil Agro-chemistry. Chinese Agriculture Science and Technology Press, Beijing (in Chinese).

    Google Scholar 

  • Macfarlane-Smith, W.H., Griffiths, D.W., 1988. A time-course study of glucosinolates in the ontogeny of forage rape (Brassica napus L.). J. Sci. Food Agric., 43(2):121–134. [doi:10.1002/jsfa.2740430203]

    Article  CAS  Google Scholar 

  • Mikkelsen, M.D., Petersen, B., Olsen, C., Halkier, B.A., 2002. Biosynthesis and metabolic engineering of glucosinolates. Amino Acids, 22(3):279–295. [doi:10.1007/s007260200014]

    Article  PubMed  CAS  Google Scholar 

  • Mithen, R.F., Dekker, M., Verkerk, R., Rabot, S., Johnson, I.T., 2000. The nutritional significance, biosynthesis and bioavailability of glucosinolates in human foods. J. Sci. Food Agric., 80(7):967–984. [doi:10.1002/(SICI)1097-0010(20000515)80:7〈967::AID-JSFA597〉3.0.CO;2-V]

    Article  CAS  Google Scholar 

  • Mooney, H.A., Drake, B.G., Luxmoore, R.J., Oechei, W.C., Pitelka, L.F., 1991. Predicting ecosystem responses to elevated CO2 concentrations. Bioscience, 41(2):96–104. [doi:10.2307/1311562]

    Article  Google Scholar 

  • Nilsson, J., Olsson, K., Engqvist, G., Ekvall, J., Olsson, M., Nyman, M., Kesson, B., 2006. Variation in the content of glucosinolates, hydroxycinnamic acids, carotenoids, total antioxidant capacity and low-molecular-weight carbohydrates in Brassica vegetables. J. Sci. Food Agric., 86(4):528–538. [doi:10.1002/jsfa.2355]

    Article  CAS  Google Scholar 

  • Padilla, G., Cartea, M.E., Velasco, P., de Haro, A., Prdás, A., 2007. Variation of glucosinolates in vegetable crop of Brassica rapa. Phytochemistry, 68(4):536–545. [doi:10.1016/j.phytochem.2006.11.017]

    Article  PubMed  CAS  Google Scholar 

  • Peñuelas, J., Estiarte, M., 1998. Can elevated CO2 affect secondary metabolism and ecosystem function? Trends Ecol. Evol., 13(1):20–24. [doi:10.1016/S0169-5347(97)01235-4]

    Article  Google Scholar 

  • Price, K.R., Casuscelli, F., Colquhoun, I.J., Rhodes, M.J.C., 1998. Composition and content of flavonol glycosides in broccoli florets (Brassica oleracea) and their fate during cooking. J. Sci. Food Agric., 77(4):468–472. [doi:10.1002/(SICI)1097-0010(199808)77:4〈468::AID-JSFA66〉3.0.CO;2-B]

    Article  CAS  Google Scholar 

  • Pruden, G., Kalembasa, S.J., Jenkinson, D.S., 1985. Reduction of nitrate of prior to Kjeldahl digestion. J. Sci. Food Agric., 36(2):71–73. [doi:10.1002/jsfa.2740360203]

    Article  CAS  Google Scholar 

  • Reddy, G.V.P., Tossavainen, P., Nerg, A.M., Holopainen, J.K., 2004. Elevated atmospheric CO2 affects the chemical quality of Brassica plants and the growth rate of the specialist Plutella xylostella, but not the generalist, Spodoptera littoralis. J. Agric. Food Chem., 52(13):4185–4191. [doi:10.1021/jf049358v]

    Article  PubMed  CAS  Google Scholar 

  • Rodman, J.E., 1991. A taxonomic analysis of glucosinolate producing plants, part 1: Phenetics. Syst. Bot., 16(4):598–618. [doi:10.2307/2418864]

    Article  Google Scholar 

  • Rosa, E., Heaney, R.K., Fenwick, G.R., Portas, C.A.M., 1997. Glucosinolates in crop plants. Hort. Rev., 19:99–215.

    CAS  Google Scholar 

  • Schnug, E., 1989. Double low oilseed rape in West Germany, sulphur nutrition and glucosinolate levels. Aspects Appl. Biol., 23:67–82.

    Google Scholar 

  • Schonhof, I., Kläring, H.P., Krumbein, A., Schreiner, M., 2007. Interaction between atmospheric CO2 and glucosinolates in Broccoli. J. Chem. Ecol., 33(1):105–114. [doi:10.1007/s10886-006-9202-0]

    Article  PubMed  CAS  Google Scholar 

  • Schreiner, M., 2005. Vegetable crop management strategies to increase the quantity of phytochemicals. Eur. J. Nutr., 44(2):85–94. [doi:10.1007/s00394-004-0498-7]

    Article  PubMed  CAS  Google Scholar 

  • Seegmüller, S., Schulte, M., Herschbach, C, Rennenberg, H., 1996. Interactive effects of mycorrhization and elevated atmospheric CO2 on sulphur nutrition of young pedunculate oak (Quercus robur L.) trees. Plant Cell Environ., 19(4):418–426. [doi:10.1111/j.1365-3040.1996.tb00333.x]

    Article  Google Scholar 

  • Shattuck, V.I., Wang, W., 1993. Nitrogen dioxide fumigation alters the glucosinolate and nitrate levels in pak choy (Brassica campestris ssp. Chinensis). Sci. Horticul., 56(2):87–100. [doi:10.1016/0304-4238(93)90010-N]

    Article  CAS  Google Scholar 

  • Tawfiq, N., Heaney, R.K., Pulumb, J.A., Fenwick, G.R., Musk, S.R., Williamson, G., 1995. Dietary glucosinolates as blocking agents against carcinogenesis: glucosinolate breakdown products assessed by induction of quinine reductase activity in murine hepa1c1c7 cells. Carcinogenesis, 16(5):1191–1194. [doi:10.1093/carcin/16.5.1191]

    Article  PubMed  CAS  Google Scholar 

  • Wattenberg, L.W., 1993. Food and Cancer Prevention: Chemical and Biological Aspects. Royal Society of Chemistry, London.

    Google Scholar 

  • Zhao, F., Evans, E.J., Bilsborrow, P.E., Schnug, E., Syers, J.K., 1992. Correction for protein content in the determination of the glucosinolate content of rapeseed by the XRF method. J. Sci. Food Agric., 58(3):431–433. [doi:10.1002/jsfa.2740580319]

    Article  CAS  Google Scholar 

  • Zhao, F., Evans, E.J., Bilsborrow, P.E., Schnug, E., Syers, J.K., 1994. Influence of nitrogen and sulphur on the glucosinolate profiles of rapeseed (Brassica napus L.). J. Sci. Food Agric., 64(3):295–304. [doi:10.1002/jsfa.2740640309]

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Fang.

Additional information

Project (No. 2007CB109305) supported by the National Basic Research Program (973) of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

La, Gx., Fang, P., Teng, Yb. et al. Effect of CO2 enrichment on the glucosinolate contents under different nitrogen levels in bolting stem of Chinese kale (Brassica alboglabra L.). J. Zhejiang Univ. Sci. B 10, 454–464 (2009). https://doi.org/10.1631/jzus.B0820354

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B0820354

Key words

CLC number

Navigation