Skip to main content
Log in

Pseudo-Superlattices of Bi2Te3 Topological Insulator Films with Enhanced Thermoelectric Performance

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

It was recently suggested theoretically that atomically thin films of Bi2Te3 topological insulators have strongly enhanced thermoelectric figure of merit. We used the “graphene-like” exfoliation process to obtain Bi2Te3 thin films. The films were stacked and subjected to thermal treatment to fabricate pseudo-superlattices of single crystal Bi2Te3 films. Thermal conductivity of these structures was measured by the “hot disk” and “laser flash” techniques. The room temperature in-plane and cross-plane thermal conductivity of the stacks decreased by a factor of ~2.4 and 3.5 respectively as compared to that of bulk. The strong decrease of thermal conductivity with preserved electrical properties translates to ~140–250% increase in the thermoelectric figure if merit. It is expected that the film thinning to few-quintuples, and tuning of the Fermi level can lead to the topological insulator surface transport regime with the theoretically predicted extraordinary thermoelectric efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. J. Goldsmid, Thermoelectric Refrigeration (Plenum, New York, 1964); D. M. Rowe, CRC Book on Thermoelectrics (CRC Press, 1995).

  2. M. S. Dresselhaus, G. Dresselhaus, X. Sun, Z. Zhang, S. B. Cronin and T. Koga, Physics of the Solid State 41, 679 (1999).

    Article  CAS  Google Scholar 

  3. L. D. Hicks, M. S. Dresselhaus, Phys. Rev. B. 47, 12727 (1993).

    Article  CAS  Google Scholar 

  4. A. Balandin and K.L. Wang, Phys. Rev. B. 58, 1544 (1998); A. Balandin and K.L. Wang, J. Appl. Phys. 84, 6149 (1998).

    Article  CAS  Google Scholar 

  5. M.Z. Hasan and C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010); X.-L. Qi and S.-C. Zhang, arXiv: 1008.2026.

  6. J. Moore, Nature Phys. 5, 378 (2009).

    Article  CAS  Google Scholar 

  7. P. Ghaemi, R.S.K. Mong and J.E. Moore, Phys. Rev. Lett. 105, 166603 (2010); F. Zahid and R. Lake, Appl. Phys. Lett., 97, 212102 (2010).

    Article  Google Scholar 

  8. D. Teweldebrhan, V. Goyal and A.A. Balandin, Nano Lett. 10, 1209 (2010); D. Teweldebrhan, V.Goyal, M. Rahman, and A. A. Balandin, Appl. Phys. Lett. 96, 053107 (2010).

    Article  CAS  Google Scholar 

  9. S.A. Barnett and M. Shinn, Annu. Rev. Mater. Sci. 24, 481 (1994); S. Tamura and F. Nori, Phys. Rev. B. 41, 7941 (1990).

    Article  CAS  Google Scholar 

  10. W. Kullmann, J. Geurts, W. Richter, N. Lehner, H. Rauh, U. Steigenberger, G. Eichhorn and R. Geick, Phys. Stat. Sol. (b) 125, 131 (1984); W. Richter, H. Kohler and C. R. Becker, Phys. Stat. Sol. (b) 84, 619 (1977).

    Article  CAS  Google Scholar 

  11. K.M.F. Shahil, M.Z. Hossain, D. Teweldebrhan and A.A. Balandin, Appl. Phys. Lett. 96, 153103 (2010)

    Article  Google Scholar 

  12. S. E. Gustafsson, Rev. Sci. Instrum. 62, 797 (1991).

  13. S. Ghosh, D. Teweldebrhan, J. R. Morales, J. E. Garay, and A. A. Balandin, J. Appl. Phys. 106, 113507 (2009); R. Ikkawi, N. Amos, A. Lavrenov, A. Krichevsky, D. Teweldebrhan, S. Ghosh, A.A. Balandin, D. Litvinov, S. Khizroev, J. Nanoelectron. Optoelectron. 3, 44 (2008).

    Article  Google Scholar 

  14. V. Goyal, D. Teweldebrhan, and A. A. Balandin, Appl. Phys. Lett. 97, 133117 (2010).

    Article  Google Scholar 

  15. C. B. Satterthwaite and R. W. Ure, Jr., Phys. Rev. 108, 1164 (1957).

    Article  CAS  Google Scholar 

  16. M.R. Dirmyer, J. Martin, G.S. Nolas, A. Sen, J.V. Badding, Small 5, 933 (2009).

    Article  CAS  Google Scholar 

  17. C. Chiritescu, C. Mortensen, D.G. Cahill, D. Johnson and P. Zschack, J. Appl. Phys. 106, 073503 (2009).

    Article  Google Scholar 

  18. O. Ben-Yehuda, R. Shuker, Y. Gelbstein, Z. Dashebsky and M.P. Dariel, J. Appl. Phys. 101, 113707 (2007).

    Article  Google Scholar 

  19. D. Cahill, S. Watson, R. Pohl, Phys. Rev. B. 46, 6131 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goyal, V., Teweldebrhan, D. & Balandin, A.A. Pseudo-Superlattices of Bi2Te3 Topological Insulator Films with Enhanced Thermoelectric Performance. MRS Online Proceedings Library 1344, 1208 (2011). https://doi.org/10.1557/opl.2011.1361

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/opl.2011.1361

Navigation