Skip to main content

Advertisement

Log in

Materials Science of High-Level Nuclear Waste Immobilization

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

With the increasing demand for the development of nuclear power comes the responsibility to address the issue of waste, including the technical challenges of immobilizing high-level nuclear wastes in stable solid forms for interim storage or disposition in geologic repositories. The immobilization of high-level nuclear wastes has been an active area of research and development for over 50 years. Borosilicate glasses and complex ceramic composites have been developed to meet many technical challenges and current needs, although regulatory issues, which vary widely from country to country, have yet to be resolved. Cooperative international programs to develop advanced proliferation-resistant nuclear technologies to close the nuclear fuel cycle and increase the efficiency of nuclear energy production might create new separation waste streams that could demand new concepts and materials for nuclear waste immobilization. This article reviews the current state-of-the-art understanding regarding the materials science of glasses and ceramics for the immobilization of highlevel nuclear waste and excess nuclear materials and discusses approaches to address new waste streams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.L. Cohen, Rev. Mod. Phys. 49, 1 (1977).

    Google Scholar 

  2. R.C. Ewing, MRS Bull. 33, 338 (2008).

    Google Scholar 

  3. W. Lutze, R.C. Ewing, Radioactive Waste Forms for the Future (North Holland, Amsterdam, 1988).

    Google Scholar 

  4. I. Mueller, W.J. Weber, MRS Bull. 26, 698 (2001).

    Google Scholar 

  5. A. Paul, Chemistry of Glasses (Chapman & Hall, New York, ed. 2, 1990).

    Google Scholar 

  6. B. Grambow, Elements 2, 357 (2006).

    Google Scholar 

  7. S.V. Stefanovsky, S.V. Yudintsev, R. Gierè, G.R. Lumpkin, in Energy, Waste, and the Environment: A Geochemical Perspective, R. Gierè, P. Stille, Eds. (Special Publication 236, Geological Society of London, London, 2004), p. 37.

    Google Scholar 

  8. www.synrocansto.com.

  9. G.J. McCarthy, Nucl. Technol. 32, 92 (1977).

    Google Scholar 

  10. A.E. Ringwood, S.E. Kesson, N.G. Ware, W.O. Hibberson, A.Major, Geochem. J. 13, 141 (1979).

    Google Scholar 

  11. A.E. Ringwood, V.M. Oversby, S.E. Kesson, W. Sinclair, N. Ware, W. Hibberson, A. Major, Nucl. Chem. Waste Manage. 2, 287 (1981).

    Google Scholar 

  12. A.E. Ringwood, Am. Sci. 70, 201 (1982).

    Google Scholar 

  13. S.E. Kesson, W.J. Sinclair, A.E. Ringwood, Nucl. Chem. Waste Manage. 4, 259 (1983).

    Google Scholar 

  14. H.W. Newkirk, C.L. Hoenig, F.L. Ryerson, J.D. Tewhey, G.S. Smith, C.S. Rossington, A.J. Brackmann, A.E. Ringwood, Ceram. Bull. 61, 559 (1982).

    Google Scholar 

  15. W.J. Weber, R.C. Ewing, C.A. Angell, G.W. Arnold, J.M Delaye, D.L. Griscom, L.W. Hobbs, A. Navrotsky, D.L. Price, A.M. Stoneham, M.C. Weinberg, J. Mater. Res. 12, 1946 (1997).

    Google Scholar 

  16. W.J. Weber, R.C. Ewing, C.R.A. Catlow, T. Diaz de la Rubia, L.W. Hobbs, C. Kinoshita, Hj. Matzke, A.T. Motta, M. Nastasi, E.K.H. Salje, E.R. Vance, S.J. Zinkle, J. Mater. Res. 13, 1434 (1998).

    Google Scholar 

  17. R.C. Ewing, W.J. Weber, J. Lian, J. Appl. Phys. 95, 5949 (2004).

    Google Scholar 

  18. G.R. Lumpkin, Elements 2, 365 (2006).

    Google Scholar 

  19. V.S. Urusov, N.I. Organova, O.V. Karimova, S.V. Yudintsev, S.V. Stefanovsky, Trans. (Dokl.) Russ. Acad. Sci./Earth Sci. Sec. 401, 319 (2005).

    Google Scholar 

  20. S.V. Yudintsev, S.V. Stefanovsky, R.C. Ewing, in Structural Chemistry of Inorganic Actinide Compounds, S.V. Krivovichev, P.C. Burns, I.V. Tananaev, Eds. (Elsevier, Amsterdam, 2007), p. 457.

    Google Scholar 

  21. B.E. Burakov, E.B. Anderson, D.A. Knecht, M.A. Zamoryanskaya, E.E. Strykanova, M.A. Yagovkina, “Synthesis of Garnet/Perovskite-Based Ceramic for the Immobilization of Pu-Residue Wastes,” in Mater. Res. Soc. Symp. Proc. 556, D.J. Wronkiewicz, J.H. Lee, Eds. (Materials Research Society, Warrendale, PA, 1999), p. 55.

    Google Scholar 

  22. P.J. Hayward, in Radioactive Waste Forms for the Future, W. Lutze, R.C. Ewing, Eds. (North Holland, Amsterdam, 1988), chap. 7, p. 427.

    Google Scholar 

  23. A.K. Dé, F. Luckscheiter, W. Lutze, G. Malow, E. Schiewer, Am. Ceram. Soc. Bull. 55, 500 (1976).

    Google Scholar 

  24. C. Martin, I. Ribet, P. Frugier, S. Gin, J. Nucl. Mater. 366, 277 (2007).

    Google Scholar 

  25. D.M. Strachan, W.W. Schulz, Ceram. Bull. 58, 865 (1979).

    Google Scholar 

  26. S.A. Gallagher, G.J. McCarthy, D.E. Pfoertsch, Am. Ceram. Soc. Bull. 55, 461 (1976).

    Google Scholar 

  27. A. Chartier, C. Meis, J.D. Gale, Phys. Rev. B 64, 085110 (2001).

    Google Scholar 

  28. M.L. Balmer, Q. Huang, W. Wong-Ng, R.S. Roth, A. Santoro, J. Solid State Chem. 130, 97 (1997).

    Google Scholar 

  29. Y. He, W. Bao, C. Song, J. Nucl. Mater. 305, 202 (2002).

    Google Scholar 

  30. K.B. Helean, A. Navrotsky, E.R. Vance, M.L. Carter, B. Ebbinghaus, O. Krikorian, J. Kian, L.M. Wang, J.G. Catalano, J. Nucl. Mater. 303, 226 (2002).

    Google Scholar 

  31. K.-A. Hughes Kubatko, K.B. Helean, A. Navrotsky, P.C. Burns, Science 302, 1191 (2003).

    Google Scholar 

  32. K.-A. Hughes Kubatko, K.B. Helean, A. Navrotsky, P.C. Burns, Am. Mineral. 90, 1284 (2005).

    Google Scholar 

  33. K.-A. Kubatko, K.B. Helean, A. Navrotsky, P.C. Burns, Am. Mineral. 91, 658 (2006).

    Google Scholar 

  34. K.B. Helean, S.V. Ushakov, C.E. Brown, A. Navrotsky, J. Lian, R.C. Ewing, J.M. Farmer, L.A. Boatner, J. Solid State Chem. 177, 1858 (2004).

    Google Scholar 

  35. K.B. Helean, A. Navrotsky, J. Lian, R.C. Ewing, “Correlation of formation enthalpies with critical amorphization temperature for pyrochlore and monazite,” in Mater. Res. Soc. Symp. Proc. 824, J.M. Hanchar, S. Stroes-Gascoyne, L. Browning, Eds. (Materials Research Society, Warrendale, PA, 2004), p. 279.

    Google Scholar 

  36. H. Xu, A. Navrotsky, M.D. Nyman, T.M. Nenoff, J. Mater. Res. 15, 815 (2000).

    Google Scholar 

  37. H. Xu, A. Navrotsky, M.D. Nyman, T.M. Nenoff, J. Mater. Res. 20, 618 (2005).

    Google Scholar 

  38. W.J. Gray, Nature 296, 547 (1982).

    Google Scholar 

  39. E.R. Vance, R. Roy, J.G. Pepin, D.K. Agrawal, J. Mater. Sci. 17, 947 (1982).

    Google Scholar 

  40. E. Vernaz, A. Loida, G. Malow, J.A.C. Marples, Hj. Matzke, in Proc. 3rd EC Conf. on Radioactive Waste Management and Disposal, L. Cecille, Ed. (Elsevier, London, 1991), p. 302.

    Google Scholar 

  41. D.M. Strachan, R.D. Scheele, E.C. Buck, J.P. Icenhower. A.E. Kozelisky, R.L. Sell, R.J. Elovich, W.C. Buchmiller, J. Nucl. Mater. 345, 109 (2005).

    Google Scholar 

  42. S.V. Stefanovsky, A.N. Lukinykh, S.V. Tomilin, A.A. Lizin, S.V. Yudintsev, “Alpha-Decay Damage in Murataite-Based Ceramics,” in Mater. Res. Soc. Symp. Proc. 1107, W.E. Lee, J.W. Roberts, N.C. Hyatt, R.W. Grimes, Eds. (Materials Research Society, Warrendale, PA, 2008), p. 389.

    Google Scholar 

  43. G. Malow, J.A.C. Marples, C. Sombret, in Radioactive Waste Management and Disposal, R. Simon, S. Orlowski, Eds. (Harwood Academic Publishers, Chur, Switzerland, 1980), p. 341.

    Google Scholar 

  44. R.P. Turcotte, J.W. Wald, F.P. Roberts, J.M. Rusin, W. Lutze, J. Am. Ceram. 65, 589 (1982).

    Google Scholar 

  45. D.M. Strachan, R.D. Scheele, E.C. Buck, A.E. Kozelisky, R.L. Sell, R.J. Elovich, W.C. Buchmiller, J. Nucl. Mater. 372, 16 (2008).

    Google Scholar 

  46. B.E. Burakov, M.A. Yagovkina, V.M. Garbuzov, A.A. Kitsay, V.A. Zirlin, “Self-Irradiation of Monazite Ceramics: Contrasting Behavior of PuPO4 and (La,Pu)PO4 Doped with Pu-238,” in Mater. Res. Soc. Symp. Proc. 824, J.M. Hanchar, S. Stroes-Gascoyne, L. Browning, Eds. (Materials Research Society, Warrendale, PA, 2004), p. 219.

    Google Scholar 

  47. W.J. Weber, R. Devanathan, A. Meldrum, L.A. Boatner, R.C. Ewing, L.M. Wang, “The Effect of Temperature and Damage Energy on Amorphization in Zircon,” in Mater. Res. Soc. Symp. Proc. 540, S.J. Zinkle, G.E. Lucas, R.C. Ewing, J.S. Williams, Eds. (Materials Research Society, Warrendale, PA, 1999), p. 367.

    Google Scholar 

  48. R.C. Ewing, A. Meldrum, L.M. Wang, W.J. Weber, L.R. Corrales, Rev. Mineral. Geochem. 53, 387 (2003).

    Google Scholar 

  49. S.X. Wang, B.D. Begg, L.M. Wang, R.C. Ewing, W.J. Weber, K.V. Govidan Kutty, J. Mater. Res. 14, 4470 (1999).

    Google Scholar 

  50. W.J. Weber, R.C. Ewing, Science 289, 2051 (2000).

    Google Scholar 

  51. K.E. Sickafus, L. Minervini, R.W. Grimes, J.A. Valdez, M. Ishimaru, F. Li, K.J. McClellan, T. Hartman, Science 289, 748 (2000).

    Google Scholar 

  52. W.J. Weber, R.C. Ewing, A. Meldrum, J. Nucl. Mater. 250, 147 (1997).

    Google Scholar 

  53. W.J. Weber, R.C. Ewing, “Radiation Effects in Crystalline Oxide Host Phases for the Immobilization of Actinides,” in Mater. Res. Soc. Symp. Proc. 713, B.P. McGrail, G.A. Cragnolino, Eds. (Materials Research Society, Warrendale, PA, 2002), p. 443.

    Google Scholar 

  54. Y. Zhang, I.-T. Bae, W.J. Weber, Nucl. Instrum. Methods B 266, 2828 (2008).

    Google Scholar 

  55. D.M. Wellman, J.P. Icenhower, W.J. Weber, J. Nucl. Mater. 340, 149 (2005).

    Google Scholar 

  56. S.V. Stefanovsky, S.V. Yudintsev, B.S. Nikonov, A.V. Mokhov, S.A. Perevalov, O.I. Stefanovsky, A.G. Ptashkin, “Phase Compositions and Leach Resistance of Actinide-Bearing Murataite Ceramics,” in Mater. Res. Soc. Symp. Proc. 893, J.L. Sarrao, A.J. Schwartz, M.R. Antonio, P.C. Burns, R.G. Haire, H. Nitsche, Eds. (Materials Research Society, Warrendale, PA, 2006), p. 429.

    Google Scholar 

  57. S.V. Stefanovsky, S.V. Yudintsev, S.A. Perevalov, I.V. Startseva, G.A. Varlakova, J. Alloys Compd. 444–445, 618 (2007).

    Google Scholar 

  58. S.V. Yudintsev, A.A. Osherova, A.V. Dubinin, A.V. Zotov, S.V. Stefanovsky, “Corrosion Study of Actinide Waste Forms with Garnet-Type Structure,” in Mater. Res. Soc. Symp. Proc. 824, J.M. Hanchar, S. Stroes-Gascoyne, L. Browning, Eds. (Materials Research Society, Warrendale, PA, 2004), p. 287.

    Google Scholar 

  59. S. Ribet, S. Gin, J. Nucl. Mater. 324, 152 (2004).

    Google Scholar 

  60. D.E. Janney, “Host Phases for Actinide Elements in the Metallic Waste Form,” in Mater. Res. Soc. Symp. Proc. 757, R.J. Finch, D.B. Bullen, Eds. (Materials Research Society, Warrendale, PA, 2003), p. 343.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber, W.J., Navrotsky, A., Stefanovsky, S. et al. Materials Science of High-Level Nuclear Waste Immobilization. MRS Bulletin 34, 46–53 (2009). https://doi.org/10.1557/mrs2009.12

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2009.12

Navigation