Skip to main content

Advertisement

Log in

Carbonyl-coordinating polymers for high-voltage solid-state lithium batteries: Solid polymer electrolytes

  • Review
  • Published:
MRS Energy & Sustainability Aims and scope Submit manuscript

An Erratum to this article was published on 01 July 2020

This article has been updated

Abstract

Solid polymer electrolytes are a crucial class of compounds in the next-generation solid-state lithium batteries featured by high safety and extraordinary energy density. This review highlights the importance of carbonyl-coordinating polymer-based solid polymer electrolytes in next-generation safe and high–energy density lithium metal batteries, unraveling their synthesis, sustainability, and electrochemical performance.With the massive consumption of fossil fuel in vehicles nowadays, the resulted air pollution and greenhouse gases issue have now aroused the global interest on the replacement of the internal combustion engines with engine systems using renewable energy. Thus, the commercial electric vehicle market is growing fast. As the requirement for longer driving distances and higher safety in commercial electric vehicles becomes more demanding, great endeavors have been devoted to developing the next-generation solid-state lithium metal batteries using high-voltage cathode materials, e.g., high nickel (Ni) ternary active materials, LiCoO2, and spinel LiNi0.5Mn1.5O4. However, the most extensively investigated solid polymer electrolytes (SPEs) are based on polyether-based polymers, especially the archetypal poly(ethylene oxide), which are still suffering from low ionic conductivity (10−7 to 10−6 S/cm at room temperature), limited lithium ion transference number (<0.2), and narrow electrochemical stability window (<3.9 V), restricting this type of SPEs from realizing their full potential for the next-generation lithium-based energy storage technologies. As a promising class of alternative polymer hosts for SPEs, carbonyl-coordinating polymers have been extensively researched, exhibiting unique and promising electrochemical properties. Herein, the synthesis, sustainability, and electrochemical performance of carbonyl-coordinating SPEs for high-voltage solid-state lithium batteries will be reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Table 1.
Figure 4.
Scheme 1.
Scheme 2.
Figure 5.
Table 2.
Figure 6.
Table 3.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Table 4.
Figure 11.

Similar content being viewed by others

Change history

References

  1. Mohanty D., Li J., Nagpure S.C., Wood D.L., and Daniel C.: Understanding the structure and structural degradation mechanisms in high-voltage, lithium-manganese–rich lithium-ion battery cathode oxides: A review of materials diagnostics. MRS Energy Sustainability 2, E15 (2015).

    Google Scholar 

  2. US Energy Information Administration (2018). Available at: http://www.eia.gov/ (accessed February 2020).

  3. Lewis N.S.: Powering the planet. MRS Bull. 32, 808 (2007).

    Google Scholar 

  4. Goodenough J.B. and Kim Y.: Challenges for rechargeable Li batteries. Chem. Mater. 22, 587 (2010).

    CAS  Google Scholar 

  5. Bresser D., Hosoi K., Howell D., Li H., Zeisel H., Amine K., and Passerini S.: Perspectives of automotive battery R&D in China, Germany, Japan, and the USA. J. Power Sources 382, 176 (2018).

    CAS  Google Scholar 

  6. Tarascon J.M. and Armand M.: Issues and challenges facing rechargeable lithium batteries. Nature 414, 359 (2001).

    CAS  Google Scholar 

  7. Quartarone E. and Mustarelli P.: Electrolytes for solid-state lithium rechargeable batteries: Recent advances and perspectives. Chem. Soc. Rev. 40, 2525 (2011).

    CAS  Google Scholar 

  8. Goodenough J.B. and Park K.-S.: The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 135, 1167 (2013).

    CAS  Google Scholar 

  9. Goodenough J.B. and Singh P.: Review—Solid electrolytes in rechargeable electrochemical cells. J. Electrochem. Soc. 162, A2387 (2015).

    CAS  Google Scholar 

  10. Goodenough J.B.: How we made the Li-ion rechargeable battery. Nat. Electron. 1, 204 (2018).

    Google Scholar 

  11. Manthiram A., Yu X., and Wang S.: Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017).

    CAS  Google Scholar 

  12. Osada I., de Vries H., Scrosati B., and Passerini S.: Ionic-liquid-based polymer electrolytes for battery applications. Angew. Chem., Int. Ed. 55, 500 (2016).

    CAS  Google Scholar 

  13. Sarabi S., Kefsi L., Merdassi A., and Robyns B.: Supervision of plug-in electric vehicles connected to the electric distribution grids. Int. J. Electr. Energy 1, 256 (2013).

    Google Scholar 

  14. Wright P.V.: Electrical conductivity in ionic complexes of poly(ethylene oxide). Br. Polym. J. 7, 319 (1975).

    CAS  Google Scholar 

  15. Armand M.: Polymer solid electrolytes—An overview. Solid State Ionics 9–10, 745 (1983).

    Google Scholar 

  16. Wang C., Zhang H., Li J., Chai J., Dong S., and Cui G.: The interfacial evolution between polycarbonate-based polymer electrolyte and Li-metal anode. J. Power Sources 397, 157 (2018).

    CAS  Google Scholar 

  17. Fish D. and Smid J.: Solvation of lithium ions in mixtures of tetraethylene glycol dimethyl ether and propylene carbonate. Electrochim. Acta 37, 2043 (1992).

    CAS  Google Scholar 

  18. Zhang C., Ueno K., Yamazaki A., Yoshida K., Moon H., Mandai T., Umebayashi Y., Dokko K., and Watanabe M.: Chelate effects in glyme/lithium bis(trifluoromethanesulfonyl)amide solvate ionic liquids. I. Stability of solvate cations and correlation with electrolyte properties. J. Phys. Chem. B 118, 5144 (2014).

    CAS  Google Scholar 

  19. Wu J., Rao Z., Cheng Z., Yuan L., Li Z., and Huang Y.: Ultrathin, flexible polymer electrolyte for cost-effective fabrication of all-solid-state lithium metal batteries. Adv. Energy Mater. 9, 1902767 (2019).

    CAS  Google Scholar 

  20. Xu C., Sun B., Gustafsson T., Edström K., Brandell D., and Hahlin M.: Interface layer formation in solid polymer electrolyte lithium batteries: An XPS study. J. Mater. Chem. A 2, 7256 (2014).

    CAS  Google Scholar 

  21. Wei Z., Chen S., Wang J., Wang Z., Zhang Z., Yao X., Deng Y., and Xu X.: Superior lithium ion conduction of polymer electrolyte with comb-like structure via solvent-free copolymerization for bipolar all-solid-state lithium battery. J. Mater. Chem. A 6, 13438 (2018).

    CAS  Google Scholar 

  22. Di Noto V., Lavina S., Giffin G.A., Negro E., and Scrosati B.: Polymer electrolytes: Present, past and future. Electrochim. Acta 57, 4 (2011).

    Google Scholar 

  23. Meyer W.H.: Polymer electrolytes for lithium-ion batteries. Adv. Mater. 10, 439 (1998).

    CAS  Google Scholar 

  24. Agrawal R.C. and Pandey G.P.: Solid polymer electrolytes: Materials designing and all-solid-state battery applications: An overview. J. Phys. D: Appl. Phys. 41, 223001 (2008).

    Google Scholar 

  25. Fergus J.W.: Ceramic and polymeric solid electrolytes for lithium-ion batteries. J. Power Sources 195, 4554 (2010).

    CAS  Google Scholar 

  26. Hallinan D.T. and Balsara N.P.: Polymer electrolytes. Annu. Rev. Mater. Res. 43, 503 (2013).

    CAS  Google Scholar 

  27. Xue Z., He D., and Xie X.: Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. J. Mater. Chem. A 3, 19218 (2015).

    CAS  Google Scholar 

  28. Mindemark J., Lacey M.J., Bowden T., and Brandell D.: Beyond PEO—Alternative host materials for Li+-conducting solid polymer electrolytes. Prog. Polym. Sci. 81, 114 (2018).

    CAS  Google Scholar 

  29. Zhang J., Yang J., Dong T., Zhang M., Chai J., Dong S., Wu T., Zhou X., and Cui G.: Aliphatic polycarbonate-based solid-state polymer electrolytes for advanced lithium batteries: Advances and perspective. Small 14, 1800821 (2018).

    Google Scholar 

  30. Manuel Stephan A.: Review on gel polymer electrolytes for lithium batteries. Eur. Polym. J. 42, 21 (2006).

    CAS  Google Scholar 

  31. Xu K.: Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303 (2004).

    CAS  Google Scholar 

  32. Druger S.D., Nitzan A., and Ratner M.A.: Dynamic bond percolation theory: A microscopic model for diffusion in dynamically disordered systems. I. Definition and one-dimensional case. J. Chem. Phys. 79, 3133 (1983).

    CAS  Google Scholar 

  33. Webb M.A., Savoie B.M., Wang Z.-G., and Miller T.F. III: Chemically specific dynamic bond percolation model for ion transport in polymer electrolytes. Macromolecules 48, 7346 (2015).

    CAS  Google Scholar 

  34. Song J.Y., Wang Y.Y., and Wan C.C.: Review of gel-type polymer electrolytes for lithium-ion batteries. J. Power Sources 77, 183 (1999).

    CAS  Google Scholar 

  35. Wang C., Wang T., Wang L., Hu Z., Cui Z., Li J., Dong S., Zhou X., and Cui G.: Differentiated lithium salt design for multilayered PEO electrolyte enables a high-voltage solid-state lithium metal battery. Adv. Sci. 6, 1901036 (2019).

    CAS  Google Scholar 

  36. Xu K.: Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114, 11503 (2014).

    CAS  Google Scholar 

  37. Zhou Q., Ma J., Dong S., Li X., and Cui G.: Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries. Adv. Mater. 31, e1902029 (2019).

    Google Scholar 

  38. Zaheer M., Xu H., Wang B., Li L., and Deng Y.: An in situ polymerized comb-like PLA/PEG-based solid polymer electrolyte for lithium metal batteries. J. Electrochem. Soc. 167, 070504 (2020).

    Google Scholar 

  39. Takahashi Y. and Tadokoro H.: Structural studies of polyethers, (–(CH2)m–O–)n. X. Crystal structure of poly(ethylene oxide). Macromolecules 6, 672 (1973).

    CAS  Google Scholar 

  40. Gadjourova Z., Andreev Y.G., Tunstall D.P., and Bruce P.G.: Ionic conductivity in crystalline polymer electrolytes. Nature 412, 520 (2001).

    CAS  Google Scholar 

  41. Cheng S., Smith D.M., and Li C.Y.: How does nanoscale crystalline structure affect ion transport in solid polymer electrolytes? Macromolecules 47, 3978 (2014).

    CAS  Google Scholar 

  42. Zhou Q., Zhang J., and Cui G.: Rigid–flexible coupling polymer electrolytes toward high-energy lithium batteries. Macromol. Mater. Eng. 303, 1800337 (2018).

    Google Scholar 

  43. Matsubara K., Kaneuchi R., and Maekita N.: 13C NMR estimation of preferential solvation of lithium ions in non-aqueous mixed solvents. J. Chem. Soc., Faraday Trans. 94, 3601 (1998).

    CAS  Google Scholar 

  44. Ong M.T., Verners O., Draeger E.W., van Duin A.C.T., Lordi V., and Pask J.E.: Lithium ion solvation and diffusion in bulk organic electrolytes from first-principles and classical reactive molecular dynamics. J. Phys. Chem. B 119, 1535 (2015).

    CAS  Google Scholar 

  45. Bogle X., Vazquez R., Greenbaum S., Cresce A.V.W., and Xu K.: Understanding Li+–solvent interaction in nonaqueous carbonate electrolytes with 17O NMR. J. Phys. Chem. Lett. 4, 1664 (2013).

    CAS  Google Scholar 

  46. Tominaga Y. and Yamazaki K.: Fast Li-ion conduction in poly(ethylene carbonate)-based electrolytes and composites filled with TiO2 nanoparticles. Chem. Commun. 50, 4448 (2014).

    CAS  Google Scholar 

  47. Kimura K., Motomatsu J., and Tominaga Y.: Correlation between solvation structure and ion-conductive behavior of concentrated poly(ethylene carbonate)-based electrolytes. J. Phys. Chem. C 120, 12385 (2016).

    CAS  Google Scholar 

  48. Okumura T. and Nishimura S.: Lithium ion conductive properties of aliphatic polycarbonate. Solid State Ionics 267, 68 (2014).

    CAS  Google Scholar 

  49. Doyle M., Fuller T.F., and Newman J.: The importance of the lithium ion transference number in lithium/polymer cells. Electrochim. Acta 39, 2073 (1994).

    CAS  Google Scholar 

  50. Thomas K.E., Sloop S.E., Kerr J.B., and Newman J.: Comparison of lithium-polymer cell performance with unity and nonunity transference numbers. J. Power Sources 89, 132 (2000).

    CAS  Google Scholar 

  51. Doyle M. and Newman J.: The use of mathematical modeling in the design of lithium/polymer battery systems. Electrochim. Acta 40, 2191 (1995).

    CAS  Google Scholar 

  52. Brissot C., Rosso M., Chazalviel J.N., and Lascaud S.: Dendritic growth mechanisms in lithium/polymer cells. J. Power Sources 81–82, 925 (1999).

    Google Scholar 

  53. Gorecki W., Jeannin M., Belorizky E., Roux C., and Armand M.: Physical properties of solid polymer electrolyte PEO(LiTFSI) complexes. J. Phys.: Condens. Matter 7, 6823 (1995).

    CAS  Google Scholar 

  54. Borodin O. and Smith G.D.: Mechanism of ion transport in amorphous poly(ethylene oxide)/LiTFSI from molecular dynamics simulations. Macromolecules 39, 1620 (2006).

    CAS  Google Scholar 

  55. Mao G., Saboungi M.-L., Price D.L., Armand M.B., and Howells W.S.: Structure of liquid PEO-LiTFSI electrolyte. Phys. Rev. Lett. 84, 5536 (2000).

    CAS  Google Scholar 

  56. Kim C.S. and Oh S.M.: Importance of donor number in determining solvating ability of polymers and transport properties in gel-type polymer electrolytes. Electrochim. Acta 45, 2101 (2000).

    CAS  Google Scholar 

  57. Chen L., Venkatram S., Kim C., Batra R., Chandrasekaran A., and Ramprasad R.: Electrochemical stability window of polymeric electrolytes. Chem. Mater. 31, 4598 (2019).

    CAS  Google Scholar 

  58. Mindemark J., Sun B., Törmä E., and Brandell D.: High-performance solid polymer electrolytes for lithium batteries operational at ambient temperature. J. Power Sources 298, 166 (2015).

    CAS  Google Scholar 

  59. Manuel Stephan A. and Nahm K.S.: Review on composite polymer electrolytes for lithium batteries. Polymer 47, 5952 (2006).

    Google Scholar 

  60. Sun C., Liu J., Gong Y., Wilkinson D.P., and Zhang J.: Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy 33, 363 (2017).

    CAS  Google Scholar 

  61. Cheng X.B., Hou T.Z., Zhang R., Peng H.J., Zhao C.Z., Huang J.Q., and Zhang Q.: Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries. Adv. Mater. 28, 2888 (2016).

    CAS  Google Scholar 

  62. Yang Q., Li W., Dong C., Ma Y., Yin Y., Wu Q., Xu Z., Ma W., Fan C., and Sun K.: PIM-1 as an artificial solid electrolyte interphase for stable lithium metal anode in high-performance batteries. J. Energy Chem. 42, 83 (2020).

    Google Scholar 

  63. Sun B., Mindemark J., Edstrom K., and Brandell D.: Polycarbonate-based solid polymer electrolytes for Li-ion batteries. Solid State Ionics 262, 738 (2014).

    CAS  Google Scholar 

  64. Silva M.M., Barros S.C., Smith M.J., and MacCallum J.R.: Characterization of solid polymer electrolytes based on poly(trimethylenecarbonate) and lithium tetrafluoroborate. Electrochim. Acta 49, 1887 (2004).

    CAS  Google Scholar 

  65. Barbosa P.C., Rodrigues L.C., Silva M.M., and Smith M.J.: Characterization of pTMCnLiPF6 solid polymer electrolytes. Solid State Ionics 193, 39 (2011).

    CAS  Google Scholar 

  66. Kobayashi S.: Enzymatic ring-opening polymerization and polycondensation for the green synthesis of polyesters. Polym. Adv. Technol. 26, 677 (2015).

    CAS  Google Scholar 

  67. Artham T. and Doble M.: Biodegradation of aliphatic and aromatic polycarbonates. Macromol. Biosci. 8, 14 (2008).

    CAS  Google Scholar 

  68. Cameron D.J.A. and Shaver M.P.: Aliphatic polyester polymer stars: Synthesis, properties and applications in biomedicine and nanotechnology. Chem. Soc. Rev. 40, 1761 (2011).

    CAS  Google Scholar 

  69. Brannigan R.P. and Dove A.P.: Synthesis, properties and biomedical applications of hydrolytically degradable materials based on aliphatic polyesters and polycarbonates. Biomater. Sci. 5, 9 (2017).

    CAS  Google Scholar 

  70. Dai Y. and Zhang X.: Recent development of functional aliphatic polycarbonates for the construction of amphiphilic polymers. Polym. Chem. 8, 7429 (2017).

    CAS  Google Scholar 

  71. Hussain T., Tausif M., and Ashraf M.: A review of progress in the dyeing of eco-friendly aliphatic polyester-based polylactic acid fabrics. J. Clean. Prod. 108, 476 (2015).

    CAS  Google Scholar 

  72. Yu Y., Wu D., Liu C., Zhao Z., Yang Y., and Li Q.: Lipase/esterase-catalyzed synthesis of aliphatic polyesters via polycondensation: A review. Process Biochem. 47, 1027 (2012).

    CAS  Google Scholar 

  73. Malmstroem E., Johansson M., and Hult A.: Hyperbranched aliphatic polyesters. Macromolecules 28, 1698 (1995).

    CAS  Google Scholar 

  74. Undin J., Plikk P., Finne-Wistrand A., and Albertsson A.-C.: Synthesis of amorphous aliphatic polyester-ether homo- and copolymers by radical polymerization of ketene acetals. J. Polym. Sci., Part A: Polym. Chem. 48, 4965 (2010).

    CAS  Google Scholar 

  75. Mehta R., Kumar V., Bhunia H., and Upadhyay S.N.: Synthesis of poly(lactic acid): A review. J. Macromol. Sci. Part C: Polym. Rev. 45, 325 (2005).

    Google Scholar 

  76. Jiang Z.: Lipase-catalyzed synthesis of aliphatic polyesters via copolymerization of lactone, dialkyl diester, and diol. Biomacromolecules 9, 3246 (2008).

    CAS  Google Scholar 

  77. Varma I.K., Albertsson A.-C., Rajkhowa R., and Srivastava R.K.: Enzyme catalyzed synthesis of polyesters. Prog. Polym. Sci. 30, 949 (2005).

    CAS  Google Scholar 

  78. Zhang J., Shi H., Wu D., Xing Z., Zhang A., Yang Y., and Li Q.: Recent developments in lipase-catalyzed synthesis of polymeric materials. Process Biochem. 49, 797 (2014).

    CAS  Google Scholar 

  79. Douka A., Vouyiouka S., Papaspyridi L.-M., and Papaspyrides C.D.: A review on enzymatic polymerization to produce polycondensation polymers: The case of aliphatic polyesters, polyamides and polyesteramides. Prog. Polym. Sci. 79, 1 (2018).

    CAS  Google Scholar 

  80. Williams C.K.: Synthesis of functionalized biodegradable polyesters. Chem. Soc. Rev. 36, 1573 (2007).

    CAS  Google Scholar 

  81. Liu Z.-L., Zhou Y., and Zhuo R.-X.: Synthesis and properties of functional aliphatic polycarbonates. J. Polym. Sci., Part A: Polym. Chem. 41, 4001 (2003).

    CAS  Google Scholar 

  82. Wang X.-L., Zhuo R.-X., Liu L.-J., He F., and Liu G.: Synthesis and characterization of novel aliphatic polycarbonates. J. Polym. Sci., Part A: Polym. Chem. 40, 70 (2002).

    CAS  Google Scholar 

  83. Tempelaar S., Mespouille L., Coulembier O., Dubois P., and Dove A.P.: Synthesis and post-polymerisation modifications of aliphatic poly(carbonate)s prepared by ring-opening polymerisation. Chem. Soc. Rev. 42, 1312 (2013).

    CAS  Google Scholar 

  84. Gross R., Kalra B., and Kumar A.: Polyester and polycarbonate synthesis by in vitro enzyme catalysis. Appl. Microbiol. Biotechnol. 55, 655 (2001).

    CAS  Google Scholar 

  85. Taherimehr M. and Pescarmona P.P.: Green polycarbonates prepared by the copolymerization of CO2 with epoxides. J. Appl. Polym. Sci. 131, 41141 (2014).

    Google Scholar 

  86. Tamura M., Ito K., Honda M., Nakagawa Y., Sugimoto H., and Tomishige K.: Direct copolymerization of CO2 and diols. Sci. Rep. 6, 24038 (2016).

    Google Scholar 

  87. Carothers W.H., Dorough G.L., and Natta F.J.v.: Studies of polymerization and ring formation. X. The reversible polymerization of six-membered cyclic esters. J. Am. Chem. Soc. 54, 761 (1932).

    CAS  Google Scholar 

  88. Bendler J.T.: Handbook of Polycarbonate Science and Technology, 1st ed. (CRC Press, New York, 1999).

    Google Scholar 

  89. Zhu W., Huang X., Li C., Xiao Y., Zhang D., and Guan G.: High-molecular-weight aliphatic polycarbonates by melt polycondensation of dimethyl carbonate and aliphatic diols: Synthesis and characterization. Polym. Int. 60, 1060 (2011).

    CAS  Google Scholar 

  90. Park J.H., Jeon J.Y., Lee J.J., Jang Y., Varghese J.K., and Lee B.Y.: Preparation of high-molecular-weight aliphatic polycarbonates by condensation polymerization of diols and dimethyl carbonate. Macromolecules 46, 3301 (2013).

    CAS  Google Scholar 

  91. Mespouille L., Coulembier O., Kawalec M., Dove A.P., and Dubois P.: Implementation of metal-free ring-opening polymerization in the preparation of aliphatic polycarbonate materials. Prog. Polym. Sci. 39, 1144 (2014).

    CAS  Google Scholar 

  92. Möller M., Hedrick J.L., Degée P., and Dubois P.: Ring opening polymerization. In Encyclopedia of Materials: Science and Technology, Buschow K.H.J., Cahn R.W., Flemings M.C., Ilschner B., Kramer E.J., Mahajan S. and Veyssière P., eds. (Elsevier, Oxford, 2001); p. 8202.

    Google Scholar 

  93. Jérôme C. and Lecomte P.: Recent advances in the synthesis of aliphatic polyesters by ring-opening polymerization. Adv. Drug Delivery Rev. 60, 1056 (2008).

    Google Scholar 

  94. Paul S., Zhu Y., Romain C., Brooks R., Saini P.K., and Williams C.K.: Ring-opening copolymerization (ROCOP): Synthesis and properties of polyesters and polycarbonates. Chem. Commun. 51, 6459 (2015).

    CAS  Google Scholar 

  95. Xu J., Feng E., and Song J.: Renaissance of aliphatic polycarbonates: New techniques and biomedical applications. J. Appl. Polym. Sci. 131, 39822 (2014).

    Google Scholar 

  96. D’Alessandro D.M., Smit B., and Long J.R.: Carbon dioxide capture: Prospects for new materials. Angew. Chem., Int. Ed. 49, 6058 (2010).

    Google Scholar 

  97. Fukuoka S., Kawamura M., Komiya K., Tojo M., Hachiya H., Hasegawa K., Aminaka M., Okamoto H., Fukawa I., and Konno S.: A novel non-phosgene polycarbonate production process using by-product CO2 as starting material. Green Chem. 5, 497 (2003).

    CAS  Google Scholar 

  98. Darensbourg D.J., Mackiewicz R.M., Phelps A.L., and Billodeaux D.R.: Copolymerization of CO2 and epoxides catalyzed by metal salen complexes. Acc. Chem. Res. 37, 836 (2004).

    CAS  Google Scholar 

  99. Sugimoto H. and Inoue S.: Copolymerization of carbon dioxide and epoxide. J. Polym. Sci., Part A: Polym. Chem. 42, 5561 (2004).

    CAS  Google Scholar 

  100. Inoue S., Koinuma H., and Tsuruta T.: Copolymerization of carbon dioxide and epoxide. J. Polym. Sci., Part B: Polym. Lett. 7, 287 (1969).

    CAS  Google Scholar 

  101. Lu X.-B., Ren W.-M., and Wu G.-P.: CO2 copolymers from epoxides: Catalyst activity, product selectivity, and stereochemistry control. Acc. Chem. Res. 45, 1721 (2012).

    CAS  Google Scholar 

  102. Coates G.W. and Moore D.R.: Discrete metal-based catalysts for the copolymerization of CO2 and epoxides: Discovery, reactivity, optimization, and mechanism. Angew. Chem., Int. Ed. 43, 6618 (2004).

    CAS  Google Scholar 

  103. Albertsson A.-C. and Varma I.K.: Aliphatic Polyesters: Synthesis, Properties and Applications, Degradable Aliphatic Polyesters (Springer Berlin Heidelberg, Berlin, Heidelberg, 2002); p. 1.

    Google Scholar 

  104. Park E.-S., Cho H.-C., Kim M.-N., and Yoon J.-S.: Chain extension and mechanical properties of unsaturated aliphatic copolyesters based on poly(L-lactic acid). J. Appl. Polym. Sci. 90, 1802 (2003).

    CAS  Google Scholar 

  105. Eyvazzadeh Kalajahi A., Rezaei M., Abbasi F., and Mir Mohamad Sadeghi G.: The effect of chain extender type on the physical, mechanical, and shape memory properties of poly(ε-caprolactone)-based polyurethane-ureas. Polym. Plast. Technol. Eng. 56, 1977 (2017).

    CAS  Google Scholar 

  106. Zhao J.-B., Wu X.-F., and Yang W.-T.: Synthesis of aliphatic polyesters by a chain-extending reaction with octamethylcyclotetrasilazane and hexaphenylcyclotrisilazane as chain extenders. J. Appl. Polym. Sci. 92, 3333 (2004).

    CAS  Google Scholar 

  107. Löfgren A., Albertsson A.-C., Dubois P., and Jérôme R.: Recent advances in ring-opening polymerization of lactones and related compounds. J. Macromol. Sci. Part C: Polym. Rev. 35, 379 (1995).

    Google Scholar 

  108. Webb A.R., Yang J., and Ameer G.A.: Biodegradable polyester elastomers in tissue engineering. Expert Opin. Biol. Ther. 4, 801 (2004).

    CAS  Google Scholar 

  109. Tokiwa Y. and Calabia B.P.: Review degradation of microbial polyesters. Biotechnol. Lett. 26, 1181 (2004).

    CAS  Google Scholar 

  110. Silvers A.L., Chang C.-C., Parrish B., and Emrick T.: Strategies in Aliphatic Polyester Synthesis for Biomaterial and Drug Delivery Applications, Degradable Polymers and Materials: Principles and Practice, 2nd ed. (American Chemical Society, Washington D.C., 2012); p. 237.

    Google Scholar 

  111. Hakkarainen M.: Aliphatic Polyesters: Abiotic and Biotic Degradation and Degradation Products (Degradable Aliphatic Polyesters, Springer, Berlin, Heidelberg, 2002); p. 113.

    Google Scholar 

  112. Hilf J. and Frey H.: Propargyl-functional aliphatic polycarbonate obtained from carbon dioxide and glycidyl propargyl ether. Macromol. Rapid Commun. 34, 1395 (2013).

    CAS  Google Scholar 

  113. Liu F., Yang J., Fan Z., Li S., Kasperczyk J., and Dobrzynski P.: Enzyme-catalyzed degradation of biodegradable polymers derived from trimethylene carbonate and glycolide by lipases from Candida Antarctica and Hog pancreas. J. Biomater. Sci. Polym. Ed. 23, 1355 (2012).

    CAS  Google Scholar 

  114. Kaplan M.L., Rietman E.A., Cava R.J., Holt L.K., and Chandross E.A.: Crown ether enhancement of ionic conductivity in a polymer-salt system. Solid State Ionics 25, 37 (1987).

    CAS  Google Scholar 

  115. Wei X. and Shriver D.F.: Highly conductive polymer electrolytes containing rigid polymers. Chem. Mater. 10, 2307 (1998).

    CAS  Google Scholar 

  116. Matsumoto K., Kakehashi M., Ouchi H., Yuasa M., and Endo T.: Synthesis and properties of polycarbosilanes having 5-membered cyclic carbonate groups as solid polymer electrolytes. Macromolecules 49, 9441 (2016).

    CAS  Google Scholar 

  117. Chai J., Liu Z., Ma J., Wang J., Liu X., Liu H., Zhang J., Cui G., and Chen L.: In situ generation of poly(vinylene carbonate) based solid electrolyte with interfacial stability for LiCoO2 lithium batteries. Adv. Sci. 4, 1600377 (2017).

    Google Scholar 

  118. Xu H., Bijleveld J., Hedge M., and Dingemans T.: Synthesis and characterization of aromatic-PDMS segmented block copolymers and their shape-memory performance. Polym. Chem. 10, 5052 (2019).

    CAS  Google Scholar 

  119. Soo P.P., Huang B., Jang Y.I., Chiang Y.M., Sadoway D.R., and Mayes A.M.: Rubbery block copolymer electrolytes for solid-state rechargeable lithium batteries. J. Electrochem. Soc. 146, 32 (1999).

    CAS  Google Scholar 

  120. Mitsuda H., Uno T., Kubo M., and Itoh T.: Solid polymer electrolytes based on poly(1,3-diacetyl-4-imidazolin-2-one). Polym. Bull. 57, 313 (2006).

    CAS  Google Scholar 

  121. Itoh T., Fujita K., Inoue K., Iwama H., Kondoh K., Uno T., and Kubo M.: Solid polymer electrolytes based on alternating copolymers of vinyl ethers with methoxy oligo(ethyleneoxy)ethyl groups and vinylene carbonate. Electrochim. Acta 112, 221 (2013).

    CAS  Google Scholar 

  122. Wang P., Chai J., Zhang Z., Zhang H., Ma Y., Xu G., Du H., Liu T., Li G., and Cui G.: An intricately designed poly(vinylene carbonate-acrylonitrile) copolymer electrolyte enables 5 V lithium batteries. J. Mater. Chem. A 7, 5295 (2019).

    CAS  Google Scholar 

  123. Britz J., Meyer W.H., and Wegner G.: Blends of poly(meth)acrylates with 2-oxo-(1,3)dioxolane side chains and lithium salts as lithium ion conductors. Macromolecules 40, 7558 (2007).

    CAS  Google Scholar 

  124. Tominaga Y.: Ion-conductive polymer electrolytes based on poly(ethylene carbonate) and its derivatives. Polym. J. 49, 291 (2017).

    CAS  Google Scholar 

  125. Spiegel E.F., Adamic K.J., Williams B.D., and Sammells A.F.: Solvation of lithium salts within single-phase dimethyl siloxane bisphenol—A carbonate block copolymer. Polymer 41, 3365 (2000).

    CAS  Google Scholar 

  126. Matsumoto M., Uno T., Kubo M., and Itoh T.: Polymer electrolytes based on polycarbonates and their electrochemical and thermal properties. Ionics 19, 615 (2013).

    CAS  Google Scholar 

  127. Abdul-Karim R., Hameed A., and Malik M.I.: Ring-opening polymerization of ethylene carbonate: Comprehensive structural elucidation by 1D & 2D-NMR techniques, and selectivity analysis. RSC Adv. 7, 11786 (2017).

    CAS  Google Scholar 

  128. Lee J.-C. and Litt M.H.: Ring-opening polymerization of ethylene carbonate and depolymerization of poly(ethylene oxide-co-ethylene carbonate). Macromolecules 33, 1618 (2000).

    CAS  Google Scholar 

  129. Dukhanin G.P., Dumler S.A., Sablin A.N., and Novakov I.A.: Solid polymeric electrolyte based on poly(ethylene carbonate)-lithium perchlorate system. Russ. J. Appl. Chem. 82, 243 (2009).

    CAS  Google Scholar 

  130. Tominaga Y., Nanthana V., and Tohyama D.: Ionic conduction in poly(ethylene carbonate)-based rubbery electrolytes including lithium salts. Polym. J. 44, 1155 (2012).

    CAS  Google Scholar 

  131. Kimura K., Hassoun J., Panero S., Scrosati B., and Tominaga Y.: Electrochemical properties of a poly(ethylene carbonate)-LiTFSI electrolyte containing a pyrrolidinium-based ionic liquid. Ionics 21, 895 (2015).

    CAS  Google Scholar 

  132. Kimura K., Matsumoto H., Hassoun J., Panero S., Scrosati B., and Tominaga Y.: A quaternary poly(ethylene carbonate)-lithium bis(trifluoromethanesulfonyl)imide-ionic liquid-silica fiber composite polymer electrolyte for lithium batteries. Electrochim. Acta 175, 134 (2015).

    CAS  Google Scholar 

  133. Motomatsu J., Kodama H., Furukawa T., and Tominaga Y.: Dielectric relaxation behavior of a poly(ethylene carbonate)-lithium bis-(trifluoromethanesulfonyl) imide electrolyte. Macromol. Chem. Phys. 216, 1660 (2015).

    CAS  Google Scholar 

  134. Tominaga Y., Yamazaki K., and Nanthana V.: Effect of anions on lithium ion conduction in poly(ethylene carbonate)-based polymer electrolytes. J. Electrochem. Soc. 162, A3133 (2015).

    CAS  Google Scholar 

  135. Kimura K., Motomatsu J., and Tominaga Y.: Highly concentrated polycarbonate-based solid polymer electrolytes having extraordinary electrochemical stability. J. Polym. Sci., Part B: Polym. Phys. 54, 2442 (2016).

    CAS  Google Scholar 

  136. Kimura K., Yajima M., and Tominaga Y.: A highly-concentrated poly(ethylene carbonate)-based electrolyte for all-solid-state Li battery working at room temperature. Electrochem. Commun. 66, 46 (2016).

    CAS  Google Scholar 

  137. Morioka T., Ota K., and Tominaga Y.: Effect of oxyethylene side chains on ion-conductive properties of polycarbonate-based electrolytes. Polymer 84, 21 (2016).

    CAS  Google Scholar 

  138. Morioka T., Nakano K., and Tominaga Y.: Ion-conductive properties of a polymer electrolyte based on ethylene carbonate/ethylene oxide random copolymer. Macromol. Rapid Commun. 38, 1600652 (2017).

    Google Scholar 

  139. Motomatsu J., Kodama H., Furukawa T., and Tominaga Y.: Dielectric relaxation and ionic transport in poly(ethylene carbonate)-based electrolytes. Polym. Adv. Technol. 28, 362 (2017).

    CAS  Google Scholar 

  140. Kimura K. and Tominaga Y.: Understanding electrochemical stability and lithium ion-dominant transport in concentrated poly(ethylene carbonate) electrolyte. ChemElectroChem 5, 4008 (2018).

    CAS  Google Scholar 

  141. Munshi M.Z.A., Owens B.B., and Nguyen S.: Measurement of Li+ ion transport numbers in poly(ethylene oxide)–LiX complexes. Polym. J. 20, 597 (1988).

    CAS  Google Scholar 

  142. Tominaga Y., Shimomura T., and Nakamura M.: Alternating copolymers of carbon dioxide with glycidyl ethers for novel ion-conductive polymer electrolytes. Polymer 51, 4295 (2010).

    CAS  Google Scholar 

  143. Nakamura M. and Tominaga Y.: Utilization of carbon dioxide for polymer electrolytes [II]: Synthesis of alternating copolymers with glycidyl ethers as novel ion-conductive polymers. Electrochim. Acta 57, 36 (2011).

    CAS  Google Scholar 

  144. Smith M.J., Silva M.M., Cerqueira S., and MacCallum J.R.: Preparation and characterization of a lithium ion conducting electrolyte based on poly(trimethylene carbonate). Solid State Ionics 140, 345 (2001).

    CAS  Google Scholar 

  145. Manuela Silva M., Barbosa P., Evans A., and Smith M.J.: Novel solid polymer electrolytes based on poly(trimethylene carbonate) and lithium hexafluoroantimonate. Solid State Sci. 8, 1318 (2006).

    CAS  Google Scholar 

  146. Sun B., Mindemark J., Edström K., and Brandell D.: Realization of high performance polycarbonate-based Li polymer batteries. Electrochem. Commun. 52, 71 (2015).

    CAS  Google Scholar 

  147. Sun B., Xu C., Mindemark J., Gustafsson T., Edström K., and Brandell D.: At the polymer electrolyte interfaces: The role of the polymer host in interphase layer formation in Li-batteries. J. Mater. Chem. A 3, 13994 (2015).

    CAS  Google Scholar 

  148. Sun B., Mindemark J., Morozov E.V., Costa L.T., Bergman M., Johansson P., Fang Y., Furó I., and Brandell D.: Ion transport in polycarbonate based solid polymer electrolytes: Experimental and computational investigations. Phys. Chem. Chem. Phys. 18, 9504 (2016).

    CAS  Google Scholar 

  149. Meabe L., Lago N., Rubatat L., Li C., Müller A.J., Sardon H., Armand M., and Mecerreyes D.: Polycondensation as a versatile synthetic route to aliphatic polycarbonates for solid polymer electrolytes. Electrochim. Acta 237, 259 (2017).

    CAS  Google Scholar 

  150. He W., Cui Z., Liu X., Cui Y., Chai J., Zhou X., Liu Z., and Cui G.: Carbonate-linked poly(ethylene oxide) polymer electrolytes towards high performance solid state lithium batteries. Electrochim. Acta 225, 151 (2017).

    CAS  Google Scholar 

  151. Liu X., Ding G., Zhou X., Li S., He W., Chai J., Pang C., Liu Z., and Cui G.: An interpenetrating network poly(diethylene glycol carbonate)-based polymer electrolyte for solid state lithium batteries. J. Mater. Chem. A 5, 11124 (2017).

    CAS  Google Scholar 

  152. Jung Y.-C., Park M.-S., Kim D.-H., Ue M., Eftekhari A., and Kim D.-W.: Room-temperature performance of poly(ethylene ether carbonate)-based solid polymer electrolytes for all-solid-state lithium batteries. Sci. Rep. 7, 17482 (2017).

    Google Scholar 

  153. Melchiors M., Keul H., and Höcker H.: Preparation and properties of solid electrolytes on the basis of alkali metal salts and poly(2,2-dimethyltrimethylene carbonate)-block-poly(ethylene oxide)-block-poly(2,2-dimethyltrimethylene carbonate). Polymer 37, 1519 (1996).

    CAS  Google Scholar 

  154. Elmér A.M. and Jannasch P.: Synthesis and characterization of poly(ethylene oxide-co-ethylene carbonate) macromonomers and their use in the preparation of crosslinked polymer electrolytes. J. Polym. Sci., Part A: Polym. Chem. 44, 2195 (2006).

    Google Scholar 

  155. Yu X., Xiao M., Wang S., Han D., and Meng Y.: Fabrication and properties of crosslinked poly(propylene carbonate maleate) gel polymer electrolyte for lithium-ion battery. J. Appl. Polym. Sci. 118, 2078 (2010).

    CAS  Google Scholar 

  156. Kwon S.-J., Kim D.-G., Shim J., Lee J.H., Baik J.-H., and Lee J.-C.: Preparation of organic/inorganic hybrid semi-interpenetrating network polymer electrolytes based on poly(ethylene oxide-co-ethylene carbonate) for all-solid-state lithium batteries at elevated temperatures. Polymer 55, 2799 (2014).

    CAS  Google Scholar 

  157. Deng K., Wang S., Ren S., Han D., Xiao M., and Meng Y.: A novel single-ion-conducting polymer electrolyte derived from CO2-based multifunctional polycarbonate. ACS Appl. Mater. Interfaces 8, 33642 (2016).

    CAS  Google Scholar 

  158. Meabe L., Goujon N., Li C., Armand M., Forsyth M., and Mecerreyes D.: Single-ion conducting poly(ethylene oxide carbonate) as solid polymer electrolyte for lithium batteries. Batteries Supercaps 3, 68 (2020).

    CAS  Google Scholar 

  159. Huang X., Huang J., Wu J., Yu X., Gao Q., Luo Y., and Hu H.: Fabrication and properties of polybutadiene rubber-interpenetrating cross-linking poly(propylene carbonate) network as gel polymer electrolytes for lithium-ion battery. RSC Adv. 5, 52978 (2015).

    CAS  Google Scholar 

  160. Huang X., Zeng S., Liu J., He T., Sun L., Xu D., Yu X., Luo Y., Zhou W., and Wu J.: High-performance electrospun poly(vinylidene fluoride)/poly(propylene carbonate) gel polymer electrolyte for lithium-ion batteries. J. Phys. Chem. C 119, 27882 (2015).

    CAS  Google Scholar 

  161. Zhao J., Zhang J., Hu P., Ma J., Wang X., Yue L., Xu G., Qin B., Liu Z., Zhou X., and Cui G.: A sustainable and rigid-flexible coupling cellulose-supported poly(propylene carbonate) polymer electrolyte towards 5 V high voltage lithium batteries. Electrochim. Acta 188, 23 (2016).

    CAS  Google Scholar 

  162. Shin J.-H., Henderson W.A., and Passerini S.: Ionic liquids to the rescue? Overcoming the ionic conductivity limitations of polymer electrolytes. Electrochem. Commun. 5, 1016 (2003).

    CAS  Google Scholar 

  163. Shin J.-H., Henderson W.A., and Passerini S.: PEO-based polymer electrolytes with ionic liquids and their use in lithium metal-polymer electrolyte batteries. J. Electrochem. Soc. 152, A978 (2005).

    CAS  Google Scholar 

  164. Wu H., Xu Y., Ren X., Liu B., Engelhard M.H., Ding M.S., El-Khoury P.Z., Zhang L., Li Q., Xu K., Wang C., Zhang J.-G., and Xu W.: Polymer-in-“Quasi-ionic liquid” electrolytes for high-voltage lithium metal batteries. Adv. Energy Mater. 9, 1902108 (2019).

    CAS  Google Scholar 

  165. Zhou D., Zhou R., Chen C., Yee W.-A., Kong J., Ding G., and Lu X.: Non-volatile polymer electrolyte based on poly(propylene carbonate), ionic liquid, and lithium perchlorate for electrochromic devices. J. Phys. Chem. B 117, 7783 (2013).

    CAS  Google Scholar 

  166. Zhang J., Zang X., Wen H., Dong T., Chai J., Li Y., Chen B., Zhao J., Dong S., Ma J., Yue L., Liu Z., Guo X., Cui G., and Chen L.: High-voltage and free-standing poly(propylene carbonate)/Li6.75La3Zr1.75Ta0.25O12 composite solid electrolyte for wide temperature range and flexible solid lithium ion battery. J. Mater. Chem. A 5, 4940 (2017).

    CAS  Google Scholar 

  167. He Z., Chen L., Zhang B., Liu Y., and Fan L.: Flexible poly(ethylene carbonate)/garnet composite solid electrolyte reinforced by poly(vinylidene fluoride-hexafluoropropylene) for lithium metal batteries. J. Power Sources 392, 232 (2018).

    CAS  Google Scholar 

  168. Imholt L., Dörr T.S., Zhang P., Ibing L., Cekic-Laskovic I., Winter M., and Brunklaus G.: Grafted polyrotaxanes as highly conductive electrolytes for lithium metal batteries. J. Power Sources 409, 148 (2019).

    CAS  Google Scholar 

  169. Zhu M., Wu J., Wang Y., Song M., Long L., Siyal S.H., Yang X., and Sui G.: Recent advances in gel polymer electrolyte for high-performance lithium batteries. J. Energy Chem. 37, 126 (2019).

    Google Scholar 

  170. Florjańczyk Z., Zygadło-Monikowska E., Wieczorek W., Ryszawy A., Tomaszewska A., Fredman K., Golodnitsky D., Peled E., and Scrosati B.: Polymer-in-salt electrolytes based on acrylonitrile/butyl acrylate copolymers and lithium salts. J. Phys. Chem. B 108, 14907 (2004).

    Google Scholar 

  171. Łasińska A.K., Marzantowicz M., Dygas J.R., Krok F., Florjańczyk Z., Tomaszewska A., Zygadło-Monikowska E., Żukowska Z., and Lafont U.: Study of ageing effects in polymer-in-salt electrolytes based on poly(acrylonitrile-co-butyl acrylate) and lithium salts. Electrochim. Acta 169, 61 (2015).

    Google Scholar 

  172. Florjańczyk Z., Zygadło-Monikowska E., Affek A., Tomaszewska A., Łasińska A., Marzantowicz M., Dygas J.R., and Krok F.: Polymer electrolytes based on acrylonitrile–butyl acrylate copolymers and lithium bis(trifluoromethanesulfone)imide. Solid State Ionics 176, 2123 (2005).

    Google Scholar 

  173. Wu I.D. and Chang F.-C.: Determination of the interaction within polyester-based solid polymer electrolyte using FTIR spectroscopy. Polymer 48, 989 (2007).

    CAS  Google Scholar 

  174. Ravi M., Song S.-H., Gu K.-M., Tang J.-N., and Zhang Z.-Y.: Effect of lithium thiocyanate addition on the structural and electrical properties of biodegradable poly(ε-caprolactone) polymer films. Ionics 21, 2171 (2015).

    CAS  Google Scholar 

  175. Ravi M., Song S., Gu K., Tang J., and Zhang Z.: Electrical properties of biodegradable poly(ɛ-caprolactone): Lithium thiocyanate complexed polymer electrolyte films. Mater. Sci. Eng., B 195, 74 (2015).

    CAS  Google Scholar 

  176. Polo Fonseca C. and Neves S.: Electrochemical properties of a biodegradable polymer electrolyte applied to a rechargeable lithium battery. J. Power Sources 159, 712 (2006).

    Google Scholar 

  177. Fonseca C.P., Rosa D.S., Gaboardi F., and Neves S.: Development of a biodegradable polymer electrolyte for rechargeable batteries. J. Power Sources 155, 381 (2006).

    CAS  Google Scholar 

  178. Lin C.-K. and Wu I.D.: Investigating the effect of interaction behavior on the ionic conductivity of polyester/LiClO4 blend systems. Polymer 52, 4106 (2011).

    CAS  Google Scholar 

  179. Watanabe M., Togo M., Sanui K., Ogata N., Kobayashi T., and Ohtaki Z.: Ionic conductivity of polymer complexes formed by poly(β-propiolactone) and lithium perchlorate. Macromolecules 17, 2908 (1984).

    CAS  Google Scholar 

  180. Watanabe M., Rikukawa M., Sanui K., Ogata N., Kato H., Kobayashi T., and Ohtaki Z.: Ionic conductivity of polymer complexes formed by poly(ethylene succinate) and lithium perchlorate. Macromolecules 17, 2902 (1984).

    CAS  Google Scholar 

  181. Watanabe M., Rikukawa M., Sanui K., and Ogata N.: Effects of polymer structure and incorporated salt species on ionic conductivity of polymer complexes formed by aliphatic polyester and alkali metal thiocyanate. Macromolecules 19, 188 (1986).

    CAS  Google Scholar 

  182. Dupon R., Papke B.L., Ratner M.A., and Shriver D.F.: Ion transport in the polymer electrolytes formed between poly(ethylene succinate) and lithium tetrafluoroborate. J. Electrochem. Soc. 131, 586 (1984).

    CAS  Google Scholar 

  183. Lee Y.-C., Ratner M.A., and Shriver D.F.: Ionic conductivity in the poly(ethylene malonate)/lithium triflate system. Solid State Ionics 138, 273 (2001).

    CAS  Google Scholar 

  184. Pesko D.M., Jung Y., Hasan A.L., Webb M.A., Coates G.W., Miller T.F., and Balsara N.P.: Effect of monomer structure on ionic conductivity in a systematic set of polyester electrolytes. Solid State Ionics 289, 118 (2016).

    CAS  Google Scholar 

  185. Webb M.A., Jung Y., Pesko D.M., Savoie B.M., Yamamoto U., Coates G.W., Balsara N.P., Wang Z.-G., and Miller T.F.: Systematic computational and experimental investigation of lithium-ion transport mechanisms in polyester-based polymer electrolytes. ACS Cent. Sci. 1, 198 (2015).

    CAS  Google Scholar 

  186. Van Horn R.M., Steffen M.R., and O’Connor D.: Recent progress in block copolymer crystallization. Polym. Cryst. 1, e10039 (2018).

    Google Scholar 

  187. Mindemark J., Törmä E., Sun B., and Brandell D.: Copolymers of trimethylene carbonate and ε-caprolactone as electrolytes for lithium-ion batteries. Polymer 63, 91 (2015).

    CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from National Key R&D Program of China (2018YFB0104300), Shenzhen Key Laboratory of Solid State Batteries (ZDSYS201802081843465), and Guangdong Provincial Key Laboratory of Energy Materials for Electric Power (2018B030322001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Wang or Yonghong Deng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Xie, J., Liu, Z. et al. Carbonyl-coordinating polymers for high-voltage solid-state lithium batteries: Solid polymer electrolytes. MRS Energy & Sustainability 7, 1 (2020). https://doi.org/10.1557/mre.2020.3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/mre.2020.3

Keywords

Navigation