Skip to main content
Log in

Surface modification of microporous carbonaceous fiber for the growth of zinc oxide micro/nanostructures for the decontamination of malathion

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Nitric acid oxidation at various concentrations was used to change the surface chemistry of activated carbon fiber (ACF). Boehm titration, zeta potential results confirmed the presence of acidic functional groups on the surface of ACF. Physicochemical characterizations verified the growth of zinc oxide (ZnO) on surface-oxidized fiber. ZnO/ACF rods and flowers formed at pH 7 and 9 were used for decontamination of malathion at solution pH in the presence of ultrasonic waves and ultraviolet radiations. The disappearance of malathion in the solution followed pseudo-first-order kinetics. Total organic carbon analysis confirmed the decontamination of malathion in aqueous media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Table I
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. M. Suzuki: Activated carbon fiber: fundamentals and applications. Carbon 32, 577–586 (1994).

    CAS  Google Scholar 

  2. K. Kadirvelu, C. Faur-Brasquet, and P.L. Cloirec: Removal of Cu (II), Pb (II), and Ni (II) by adsorption onto activated carbon cloths. Langmuir 16, 8404–8409 (2000).

    CAS  Google Scholar 

  3. A.S. Subrenat and P.A. Le Cloirec: Volatile organic compound (VOC) removal by adsorption onto activated carbon fiber cloth and electrothermal desorption: an industrial application. Chem. Eng. Commun. 193, 478–486 (2006).

    CAS  Google Scholar 

  4. G. Chen, Y. Wang, Q. Shen, Y. Song, G. Chen, and H. Yang: Synthesis and enhanced photocatalytic activity of 3D flowerlike ZnO microstructures on activated carbon fiber. Mater. Lett. 123, 145–148 (2014).

    CAS  Google Scholar 

  5. V.H.T. Thi and B.K. Lee: Great improvement on tetracycline removal using ZnO rod-activated carbon fiber composite prepared with a facile microwave method. J. Hazard. Mater. 324, 329–339 (2017).

    Google Scholar 

  6. H. Zhang, L. Wang, J.-F. Tong and X.-S. Yi: Preparation of zinc oxide whisker on carbon fibers. Key Eng. Mater. 434-435, 790–792 (2010).

    Google Scholar 

  7. R.N. Fallah and S. Azizian: Removal of thiophenic compounds from liquid fuel by different modified activated carbon cloths. Fuel Process. Technol. 93, 45–52 (2012).

    CAS  Google Scholar 

  8. D. Aggarwal, M. Goyal, and R.C. Bansal: Adsorption of chromium by activated carbon from aqueous solution. Carbon 37, 1989–1997 (1999).

    CAS  Google Scholar 

  9. A. Jain, R. Balasubramanian, and M.P. Srinivasan: Tuning hydrochar properties for enhanced mesopore development in activated carbon by hydrothermal carbonization. Microporous Mesoporous Mater. 203, 178–185 (2015).

    CAS  Google Scholar 

  10. B. Hu, K. Wang, L. Wu, S.H. Yu, M. Antonietti, and M.M. Titirici: Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv. Mater. 22, 813–828 (2010).

    CAS  Google Scholar 

  11. S.H. Jung, E. Oh, K.H. Lee, Y. Yang, C.G. Park, W. Park, and S.H. Jeong: Sonochemical preparation of shape-selective ZnO nanostructures. Cryst. Growth Des. 8, 265–269 (2008).

    CAS  Google Scholar 

  12. J. Wang, F. Qu, and X. Wu: Controlled synthesis and photocatalytic properties of three dimensional hierarchical ZnO microflowers. Mater. Express 3, 256–264 (2013).

    CAS  Google Scholar 

  13. R. Yukawa, S. Yamamoto, K. Ozawa, M. Emori, M. Ogawa, S. Yamamoto, K. Fujikawa, R. Hobara, S. Kitagawa, H. Daimon, and H. Sakama: Electron-hole recombination on ZnO (0001) single-crystal surface studied by time-resolved soft x-ray photoelectron spectroscopy. Appl. Phy. Lett. 105, 151602 (2014).

    Google Scholar 

  14. S.U. Ilyas, R. Pendyala, and N. Marneni: Dispersion behaviour and agglomeration effects of zinc oxide nanoparticles in ethanol-water mixtures. Mater. Res. Innov. 18(Suppl. 6), S6–179 (2014).

    Google Scholar 

  15. D. Shao, Q. Wei, L. Zhang, Y. Cai, and S. Jiang: Surface functionalization of carbon nanofibers by sol-gel coating of zinc oxide. Appl. Surf. Sci. 254, 6543–6546 (2008).

    CAS  Google Scholar 

  16. M. Tonezzer and R.G. Lacerda: Integrated zinc oxide nanowires/carbon microfiber gas sensors. Sens. Actuators B 150, 517–522 (2010).

    CAS  Google Scholar 

  17. E. Mosayebi and S. Azizian: Study of copper ion adsorption from aqueous solution with different nanostructured and microstructured zinc oxides and zinc hydroxide loaded on activated carbon cloth. J. Mol. Liq. 214, 384–389 (2016).

    CAS  Google Scholar 

  18. M.T.Z. Myint, S.H. Al-Harthi, and J. Dutta: Brackish water desalination by capacitive deionization using zinc oxide micro/nanostructures grafted on activated carbon cloth electrodes. Desalination 344, 236–242 (2014).

    CAS  Google Scholar 

  19. J. Meng, B. Yang, Y. Zhang, X. Dong, and J. Shu: Heterogeneous ozonation of suspended malathion and chlorpyrifos particles. Chemosphere 79, 394–400 (2010).

    CAS  Google Scholar 

  20. M.B. Kralj, M. Franko, and P. Trebse: Photodegradation of organophosphorus insecticides-investigations of products and their toxicity using gas chromatography-mass spectrometry and AChE-thermal lens spectrometric bioassay. Chemosphere 67, 99–107 (2007).

    Google Scholar 

  21. A.M. Donia, A.A. Atia, R.A. Hussien, and R.T. Rashad: Comparative study on the adsorption of malathion pesticide by different adsorbents from aqueous solution. Desalination Water Treat. 47, 300–309 (2012).

    CAS  Google Scholar 

  22. B. Singh, J. Kaur, and K. Singh: Biodegradation of malathion by Brevibacillus sp. strain KB2 and Bacillus cereus strain PU. World J. Microbiol. Biotechnol. 28, 1133–1141 (2012).

    CAS  Google Scholar 

  23. K.A. Mohamed, A.A. Basfar, H.A. Al-Kahtani, and K.S. Al-Hamad: Radiolytic degradation of malathion and lindane in aqueous solutions. Radiat. Phys. Chem. 78, 994–1000 (2009).

    CAS  Google Scholar 

  24. T.J. Athauda, P. Hari, and R.R. Ozer: Tuning physical and optical properties of ZnO nanowire arrays grown on cotton fibers. Appl. Mater. Interfaces 5, 6237–6246 (2013).

    CAS  Google Scholar 

  25. C. Faur-Brasquet, K. Kadirvelu, and P. Le Cloirec: Removal of metal ions from aqueous solution by adsorption onto activated carbon cloths: adsorption competition with organic matter. Carbon 40, 2387–2392 (2002).

    CAS  Google Scholar 

  26. C.L. Mangun, K.R. Benak, M.A. Daley, and J. Economy: Oxidation of activated carbon fibers: effect on pore size, surface chemistry, and adsorption properties. Chem. Mater. 11, 3476–3483 (1999).

    CAS  Google Scholar 

  27. Z. Hashisho, M.J. Rood, S. Barot, and J. Bernhard: Role of functional groups on the microwave attenuation and electric resistivity of activated carbon fiber cloth. Carbon 47, 1814–1823 (2009).

    CAS  Google Scholar 

  28. J.P. Chen and S. Wu: Acid/base-treated activated carbons: characterization of functional groups and metal adsorptive properties. Langmuir 20, 2233–2242 (2004).

    CAS  Google Scholar 

  29. I.D. Harry, B. Saha, and I.W. Cumming: Effect of electrochemical oxidation of activated carbon fiber on competitive and noncompetitive sorption of trace toxic metal ions from aqueous solution. J. Colloid Interface Sci. 304, 9–20 (2006).

    CAS  Google Scholar 

  30. J. Rouquerol, F. Rouquerol, P. Llewellyn, G. Maurin, and K.S. Sing: Adsorption by Powders and Porous Solids: Principles, Methodology and Applications (Academic Press, Oxford, UK, 2013).

    Google Scholar 

  31. S.J. Zhang, H.Q. Yu, and H.M. Feng: PVA-based activated carbon fibers with lotus root-like axially porous structure. Carbon 44, 2059–2068 (2006).

    CAS  Google Scholar 

  32. Y.C. Chiang, C.C. Lee, and H.C. Lee: Characterization of microstructure and surface properties of heat-treated PAN-and rayon-based activated carbon fibers. J Porous Mater. 14, 227–237 (2007).

    CAS  Google Scholar 

  33. W. Liu, M. Shi, E. Ma, and G. Zhao: Microstructure and Properties of Liquefied Wood-Based Activated Carbon Fibers Prepared from Precursors and Carbon Fibers. Wood Fiber Sci. 46, 39–47 (2014).

    Google Scholar 

  34. A. Anand, N. Rani, P. Saxena, H. Bhandari, and S.K. Dhawan: Development of polyaniline/zinc oxide nanocomposite impregnated fabric as an electrostatic charge dissipative material. Polym. Int. 64, 1096–1103 (2015).

    CAS  Google Scholar 

  35. Y.S. Lee, Y.H. Kim, J.S. Hong, J.K. Suh, and G.J. Cho: The adsorption properties of surface modified activated carbon fibers for hydrogen storages. Catal. Today 120, 420–425 (2007).

    CAS  Google Scholar 

  36. S. Sepulveda-Guzman, B. Reeja-Jayan, E. de La Rosa, A. Torres-Castro, V. Gonzalez-Gonzalez, and M. Jose-Yacaman: Synthesis of assembled ZnO structures by precipitation method in aqueous media. Mater. Chem. Phys. 115, 172–178 (2009).

    CAS  Google Scholar 

  37. T.J. Athauda, W.S. Le Page, J.M. Chalker, and R.R. Ozer: High density growth of ZnO nanorods on cotton fabric enables access to a flame resistant composite. RSC Adv. 4, 14582–14585 (2014).

    CAS  Google Scholar 

  38. J. Wang, W. Sun, Z. Zhang, X. Zhang, R. Li, T. Ma, P. Zhang, and Y. Li: Sonocatalytic degradation of methyl parathion in the presence of micronsized and nano-sized rutile titanium dioxide catalysts and comparison of their sonocatalytic abilities. J. Mol. Catal. A: Chem. 272, 84–90 (2007).

    CAS  Google Scholar 

  39. J. Madhavan, P.S.S. Kumar, S. Anandan, F. Grieser, and M. Ashokkumar: Sonophotocatalytic degradation of monocrotophos using TiO2 and Fe 3+. J. Hazard. Mater. 177, 944–949 (2010).

    CAS  Google Scholar 

  40. N.A. Ramos-Delgado, L. Hinojosa-Reyes, I.L. Guzman-Mar, M.A. Gracia-Pinilla, and A. Hernández-Ramírez: Synthesis by sol-gel of WO3/TiO2 for solar photocatalytic degradation of malathion pesticide. Catal. Today 209, 35–40 (2013).

    CAS  Google Scholar 

  41. A.N. Kadam, R.S. Dhabbe, M.R. Kokate, Y.B. Gaikwad, and K.M. Garadkar: Preparation of N doped TiO2 via microwave-assisted method and its photocatalytic activity for degradation of malathion. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 133, 669–676 (2014).

    CAS  Google Scholar 

Download references

Acknowledgments

This work was carried out as a part of Phase-II research program in DRDO-BU CLS, Bharathiar University Campus, Coimbatore. One of the authors A. G. would like to thank DRDO for providing the funding to carry out this project. The author would also thank J.A. Allen, K.P. Thiruppathi, and S. Jiji for their help in the material characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna Kadirvelu.

Supplementary material

Supplementary material

The supplementary material for this article can be found at {rs|https://doi.org/10.1557/mrc.2018.11|url|}

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gopinath, A., Kadirvelu, K. Surface modification of microporous carbonaceous fiber for the growth of zinc oxide micro/nanostructures for the decontamination of malathion. MRS Communications 8, 152–159 (2018). https://doi.org/10.1557/mrc.2018.11

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.11

Navigation