Skip to main content
Log in

Heterogeneous deformation of two-dimensional materials for emerging functionalities

  • Invited Review
  • Heterogeneity in 2D Material
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Atomically thin 2D materials exhibit strong intralayer covalent bonding and weak interlayer van der Waals interactions, offering unique high in-plane strength and out-of-plane flexibility. While atom-thick nature of 2D materials may cause uncontrolled intrinsic/extrinsic deformation in multiple length scales, it also provides new opportunities for exploring coupling between heterogeneous deformations and emerging functionalities in controllable and scalable ways for electronic, optical, and optoelectronic applications. In this review, we discuss (i) the mechanical characteristics of 2D materials, (ii) uncontrolled inherent deformation and extrinsic heterogeneity present in 2D materials, (iii) experimental strategies for controlled heterogeneous deformation of 2D materials, (iv) 3D structure-induced novel functionalities via crumple/wrinkle structure or kirigami structures, and (v) heterogeneous strain-induced emerging functionalities in exciton and phase engineering. Overall, heterogeneous deformation offers unique advantages for 2D materials research by enabling spatial tunability of 2D materials’ interactions with photons, electrons, and molecules in a programmable and controlled manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, and A.K. Geim: Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U. S. A. 102, 10451 (2005).

    Article  CAS  Google Scholar 

  2. D. Akinwande, N. Petrone, and J. Hone: Two-dimensional flexible nanoelectronics. Nat. Commun. 5, 5678 (2014).

    Article  CAS  Google Scholar 

  3. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, and M.S. Strano: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699 (2012).

    Article  CAS  Google Scholar 

  4. F. Guinea, M.I. Katsnelson, and A.K. Geim: Energy gaps and a zero-field quantum hall effect in graphene by strain engineering. Nat. Phys. 6, 30 (2010).

    Article  CAS  Google Scholar 

  5. N. Levy, S.A. Burke, K.L. Meaker, M. Panlasigui, A. Zettl, F. Guinea, A.H. Castro Neto, and M.F. Crommie: Strain-induced pseudo-magnetic fields greater than 300 tesla in graphene nanobubbles. Science 329, 544 (2010).

    Article  CAS  Google Scholar 

  6. C. Lee, X. Wei, J.W. Kysar, and J. Hone: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385 (2008).

    Article  CAS  Google Scholar 

  7. K.S. Novoselov, A.K. Geim, S. V Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov: Electric field effect in atomically thin carbon films. Science 306, 666 (2004).

    Article  CAS  Google Scholar 

  8. Q. Zhao, M.B. Nardelli, and J. Bernholc: Ultimate strength of carbon nanotubes: A theoretical study. Phys. Rev. B: Condens. Matter Mater. Phys. 65, 1 (2002).

    Google Scholar 

  9. I.W. Frank, D.M. Tanenbaum, A.M. Van Der Zande, and P.L. McEuen: Mechanical properties of suspended graphene sheets. J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct. 25, 2558 (2007).

    Article  CAS  Google Scholar 

  10. Y. Wei, B. Wang, J. Wu, R. Yang, and M.L. Dunn: Bending rigidity and Gaussian bending stiffness of single-layered graphene. Nano Lett. 13, 26 (2013).

    Article  CAS  Google Scholar 

  11. V. Vijayaraghavan and L. Zhang: Effective mechanical properties and thickness determination of boron nitride nanosheets using molecular dynamics simulation. Nanomaterials 8, 546 (2018).

    Article  CAS  Google Scholar 

  12. L. Boldrin, F. Scarpa, R. Chowdhury, and S. Adhikari: Effective mechanical properties of hexagonal boron nitride nanosheets. Nanotechnology 22, 505702 (2011).

    Article  CAS  Google Scholar 

  13. J.W. Jiang, Z. Qi, H.S. Park, and T. Rabczuk: Elastic bending modulus of single-layer molybdenum disulfide (MoS2): Finite thickness effect. Nanotechnology 24, 435705 (2013).

    Article  CAS  Google Scholar 

  14. K. Lai, W.B. Zhang, F. Zhou, F. Zeng, and B.Y. Tang: Bending rigidity of transition metal dichalcogenide monolayers from first-principles. J. Phys. D: Appl. Phys. 49, 185301 (2016).

    Article  CAS  Google Scholar 

  15. D. Verma, B. Hourahine, T. Frauenheim, R.D. James, and T. Dumitricǎ: Directional-dependent thickness and bending rigidity of phosphorene. Phys. Rev. B 94, 121404(R) (2016).

    Article  Google Scholar 

  16. J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, and S. Roth: The structure of suspended graphene sheets. Nature 446, 60 (2007).

    Article  CAS  Google Scholar 

  17. C.H. Lui, L. Liu, K.F. Mak, G.W. Flynn, and T.F. Heinz: Ultraflat graphene. Nature 462, 339 (2009).

    Article  CAS  Google Scholar 

  18. A. Fasolino, J.H. Los, and M.I. Katsnelson: Intrinsic ripples in graphene. Nat. Mater. 6, 858 (2007).

    Article  CAS  Google Scholar 

  19. N.D. Mermin: Crystalline order in two dimensions. Phys. Rev. 176, 250 (1968).

    Article  Google Scholar 

  20. W. Wang, S. Yang, and A. Wang: Observation of the unexpected morphology of graphene wrinkle on copper substrate. Sci. Rep. 7, 1 (2017).

    Article  CAS  Google Scholar 

  21. B. Deng, Z. Pang, S. Chen, X. Li, C. Meng, J. Li, M. Liu, J. Wu, Y. Qi, W. Dang, H. Yang, Y. Zhang, J. Zhang, N. Kang, H. Xu, Q. Fu, X. Qiu, P. Gao, Y. Wei, Z. Liu, and H. Peng: Wrinkle-free single-crystal graphene wafer grown on strain-engineered substrates. ACS Nano 11, 12337 (2017).

    Article  CAS  Google Scholar 

  22. H. Germanium, J. Lee, E.K. Lee, W. Joo, Y. Jang, B. Kim, J.Y. Lim, S. Choi, S.J. Ahn, J.R. Ahn, M. Park, C. Yang, B.L. Choi, S. Hwang, and D. Whang: Wafer-scale growth of single-crystal. Science 344, 286 (2014).

    Article  CAS  Google Scholar 

  23. H. Ghorbanfekr-Kalashami, K.S. Vasu, R.R. Nair, F.M. Peeters, and M. Neek-Amal: Dependence of the shape of graphene nanobubbles on trapped substance. Nat. Commun. 8, 15844 (2017).

    Article  CAS  Google Scholar 

  24. D.A. Sanchez, Z. Dai, P. Wang, A. Cantu-Chavez, C.J. Brennan, R. Huang, and N. Lu: Mechanics of spontaneously formed nanoblisters trapped by transferred 2D crystals. Proc. Natl. Acad. Sci. U. S. A. 115, 7884 (2018).

    Article  CAS  Google Scholar 

  25. E. Khestanova, F. Guinea, L. Fumagalli, A.K. Geim, and I.V. Grigorieva: Universal shape and pressure inside bubbles appearing in van der Waals heterostructures. Nat. Commun. 7, 12587 (2016).

    Article  CAS  Google Scholar 

  26. Z. Dai, Y. Hou, D.A. Sanchez, G. Wang, C.J. Brennan, Z. Zhang, L. Liu, and N. Lu: Interface-governed deformation of nanobubbles and nanotents formed by two-dimensional materials. Phys. Rev. Lett. 121, 266101 (2018).

    Article  Google Scholar 

  27. C. Palacios-Berraquero, D.M. Kara, A.R.P. Montblanch, M. Barbone, P. Latawiec, D. Yoon, A.K. Ott, M. Loncar, A.C. Ferrari, and M. Atatüre: Large-scale quantum-emitter arrays in atomically thin semiconductors. Nat. Commun. 8, 15093 (2017).

    Article  CAS  Google Scholar 

  28. C.W. Bark, D.A. Felker, Y. Wang, Y. Zhangd, H.W. Jang, C.M. Folkman, J.W. Park, S.H. Baek, H. Zhou, D.D. Fong, X.Q. Pan, E.Y. Tsymbal, M.S. Rzchowski, and C.B. Eom: Tailoring a two-dimensional electron gas at the LaAlO3/SrTiO3 (001) interface by epitaxial strain. Proc. Natl. Acad. Sci. U. S. A. 108, 4720 (2011).

    Article  CAS  Google Scholar 

  29. S. Xie, L. Tu, Y. Han, L. Huang, K. Kang, K.U. Lao, P. Poddar, C. Park, D.A. Muller, R.A. DiStasio, and J. Park: Coherent, atomically thin transition-metal dichalcogenide superlattices with engineered strain. Science 359, 1131 (2018).

    Article  CAS  Google Scholar 

  30. S. Lou, Y. Liu, F. Yang, S. Lin, R. Zhang, Y. Deng, M. Wang, K.B. Tom, F. Zhou, H. Ding, K.C. Bustillo, X. Wang, S. Yan, M. Scott, A. Minor, and J. Yao: Three-dimensional architecture enabled by strained two-dimensional material heterojunction. Nano Lett. 18, 1819 (2018).

    Article  CAS  Google Scholar 

  31. J.W. Jiang: Misfit strain-induced buckling for transition-metal dichalcogenide lateral heterostructures: A molecular dynamics study. Acta Mech. Solida Sin. 32, 17 (2019).

    Article  Google Scholar 

  32. S. Kumar, A. Kaczmarczyk, and B.D. Gerardot: Strain-induced spatial and spectral isolation of quantum emitters in mono- and bilayer WSe2. Nano Lett. 15, 7567 (2015).

    Article  CAS  Google Scholar 

  33. A. Branny, S. Kumar, R. Proux, and B.D. Gerardot: Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor. Nat. Commun. 8, 15053 (2017).

    Article  CAS  Google Scholar 

  34. Y. Luo, G.D. Shepard, J.V. Ardelean, D.A. Rhodes, B. Kim, K. Barmak, J.C. Hone, and S. Strauf: Deterministic coupling of site-controlled quantum emitters in monolayer WSe2 to plasmonic nanocavities. Nat. Nanotechnol. 13, 1137 (2018).

    Article  CAS  Google Scholar 

  35. A. Reserbat-Plantey, D. Kalita, Z. Han, L. Ferlazzo, S. Autier-Laurent, K. Komatsu, C. Li, R. Weil, A. Ralko, L. Marty, S. Guéron, N. Bendiab, H. Bouchiat, and V. Bouchiat: Strain superlattices and macroscale suspension of graphene induced by corrugated substrates. Nano Lett. 14, 5044 (2014).

    Article  CAS  Google Scholar 

  36. J. Kern, I. Niehues, P. Tonndorf, R. Schmidt, D. Wigger, R. Schneider, T. Stiehm, S. Michaelis de Vasconcellos, D.E. Reiter, T. Kuhn, and R. Bratschitsch: Nanoscale positioning of single-photon emitters in atomically thin WSe2. Adv. Mater. 28, 7101 (2016).

    Article  CAS  Google Scholar 

  37. T. Cai, S. Dutta, S. Aghaeimeibodi, Z. Yang, S. Nah, J.T. Fourkas, and E. Waks: Coupling emission from single localized defects in two-dimensional semiconductor to surface plasmon polaritons. Nano Lett. 17, 6564 (2017).

    Article  CAS  Google Scholar 

  38. H. Li, A.W. Contryman, X. Qian, S.M. Ardakani, Y. Gong, X. Wang, J.M. Weisse, C.H. Lee, J. Zhao, P.M. Ajayan, J. Li, H.C. Manoharan, and X. Zheng: Optoelectronic crystal of artificial atoms in strain-textured molybdenum disulphide. Nat. Commun. 6, 7381 (2015).

    Article  CAS  Google Scholar 

  39. T. Liu, S. Liu, K.H. Tu, H. Schmidt, L. Chu, D. Xiang, J. Martin, G. Eda, C.A. Ross, and S. Garaj: Crested two-dimensional transistors. Nat. Nanotechnol. 14, 223 (2019).

    Article  CAS  Google Scholar 

  40. J. Choi, H.J. Kim, M.C. Wang, J. Leem, W.P. King, and S. Nam: Three-dimensional integration of graphene via swelling, shrinking, and adaptation. Nano Lett. 15, 4525 (2015).

    Article  CAS  Google Scholar 

  41. M.C. Wang, S. Chun, R.S. Han, A. Ashraf, P. Kang, and S. Nam: Heterogeneous, three-dimensional texturing of graphene. Nano Lett. 15, 1829 (2015).

    Article  CAS  Google Scholar 

  42. J. Leem, M.C. Wang, P. Kang, and S. Nam: Mechanically self-assembled, three-dimensional graphene-gold hybrid nanostructures for advanced nanoplasmonic sensors. Nano Lett. 15, 7684 (2015).

    Article  CAS  Google Scholar 

  43. S. Deng, D. Rhee, W-K. Lee, S. Che, B. Keisham, V. Berry, and T.W. Odom: Graphene wrinkles enable spatially defined chemistry. Nano Lett. 19, 5640 (2019).

    Article  CAS  Google Scholar 

  44. W.K. Lee, J. Kang, K.S. Chen, C.J. Engel, W. Bin Jung, D. Rhee, M.C. Hersam, and T.W. Odom: Multiscale, hierarchical patterning of graphene by conformal wrinkling. Nano Lett. 16, 7121 (2016).

    Article  CAS  Google Scholar 

  45. P. Kang, M.C. Wang, P.M. Knapp, and S.W. Nam: Crumpled graphene photodetector with enhanced, strain-tunable, and wavelength-selective photoresponsivity. Adv. Mater. 28, 4639 (2016).

    Article  CAS  Google Scholar 

  46. J. Choi, J. Mun, M.C. Wang, A. Ashraf, S-W. Kang, and S. Nam: Hierarchical, dual-scale structures of atomically thin MoS2 for tunable wetting. Nano Lett. 17, 1756 (2017).

    Article  CAS  Google Scholar 

  47. J. Quereda, P. San-Jose, V. Parente, L. Vaquero-Garzon, A.J. Molina-Mendoza, N. Agraït, G. Rubio-Bollinger, F. Guinea, R. Roldán, and A. Castellanos-Gomez: Strong modulation of optical properties in black phosphorus through strain-engineered rippling. Nano Lett. 16, 2931 (2016).

    Article  CAS  Google Scholar 

  48. K.P. Dhakal, S. Roy, H. Jang, X. Chen, W.S. Yun, H. Kim, J. Lee, J. Kim, and J.H. Ahn: Local strain induced band gap modulation and photoluminescence enhancement of multilayer transition metal dichalcogenides. Chem. Mater. 29, 5124 (2017).

    Article  CAS  Google Scholar 

  49. M. Kim, P. Kang, J. Leem, and S.W. Nam: A stretchable crumpled graphene photodetector with plasmonically enhanced photoresponsivity. Nanoscale 9, 4058 (2017).

    Article  CAS  Google Scholar 

  50. A. Krishna, J.M. Kim, J. Leem, M.C. Wang, S. Nam, and J. Lee: Ultraviolet to mid-infrared emissivity control by mechanically reconfigurable graphene. Nano Lett. 19, 5086 (2019).

    Article  CAS  Google Scholar 

  51. P. Snapp, P. Kang, J. Leem, and S.W. Nam: Colloidal photonic crystal strain sensor integrated with deformable graphene phototransducer. Adv. Funct. Mater. 28, 1902216 (2019).

    Article  CAS  Google Scholar 

  52. J. Leem, Y. Lee, M.C. Wang, J.M. Kim, J. Mun, M.F. Haque, S-W. Kang, and S. Nam: Crack-assisted, localized deformation of van der Waals materials for enhanced strain confinement. 2D Mater. 6, 044001 (2019).

    Article  CAS  Google Scholar 

  53. J. Zang, S. Ryu, N. Pugno, Q. Wang, Q. Tu, M.J. Buehler, and X. Zhao: Multifunctionality and control of the crumpling and unfolding of large-area graphene. Nat. Mater. 12, 321 (2013).

    Article  CAS  Google Scholar 

  54. A.V. Thomas, B.C. Andow, S. Suresh, O. Eksik, J. Yin, A.H. Dyson, and N. Koratkar: Controlled crumpling of graphene oxide films for tunable optical transmittance. Adv. Mater. 27, 3256 (2015).

    Article  CAS  Google Scholar 

  55. A. Castellanos-Gomez, R. Roldán, E. Cappelluti, M. Buscema, F. Guinea, H.S.J. Van Der Zant, and G.A. Steele: Local strain engineering in atomically thin MoS2. Nano Lett. 13, 5361 (2013).

    Article  CAS  Google Scholar 

  56. S. Yang, C. Wang, H. Sahin, H. Chen, Y. Li, S.S. Li, A. Suslu, F.M. Peeters, Q. Liu, J. Li, and S. Tongay: Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale strain engineering. Nano Lett. 15, 1660 (2015).

    Article  CAS  Google Scholar 

  57. R.L.D. Whitby: Chemical control of graphene architecture: Tailoring shape and properties. ACS Nano 8, 9733 (2014).

    Article  CAS  Google Scholar 

  58. W. Chen, X. Gui, B. Liang, M. Liu, Z. Lin, Y. Zhu, and Z. Tang: Controllable fabrication of large-area wrinkled graphene on a solution surface. ACS Appl. Mater. Interfaces 8, 10977 (2016).

    Article  CAS  Google Scholar 

  59. F. Guinea, B. Horovitz, and P. Le Doussal: Gauge fields, ripples and wrinkles in graphene layers. Solid State Commun. 149, 1140 (2009).

    Article  CAS  Google Scholar 

  60. M.C. Wang, J. Leem, P. Kang, J. Choi, P. Knapp, K. Yong, and S.W. Nam: Mechanical instability driven self-assembly and architecturing of 2D materials. 2D Mater. 4, 022002 (2017).

    Article  CAS  Google Scholar 

  61. P. Kang, K.H. Kim, H.G. Park, and S.W. Nam: Mechanically reconfigurable architectured graphene for tunable plasmonic resonances. Light: Sci. Appl. 7, 17 (2018).

    Article  CAS  Google Scholar 

  62. K.J. Kubiak, M.C.T. Wilson, T.G. Mathia, and P. Carval: Wettability versus roughness of engineering surfaces. Wear 271, 523 (2011).

    Article  CAS  Google Scholar 

  63. W. Lee, Y. Liu, Y. Lee, B.K. Sharma, S.M. Shinde, S.D. Kim, K. Nan, Z. Yan, M. Han, Y. Huang, Y. Zhang, J.H. Ahn, and J.A. Rogers: Two-dimensional materials in functional three-dimensional architectures with applications in photodetection and imaging. Nat. Commun. 9, 1417 (2018).

    Article  CAS  Google Scholar 

  64. W. Zheng, W. Huang, F. Gao, H. Yang, M. Dai, G. Liu, B. Yang, J. Zhang, Y.Q. Fu, X. Chen, Y. Qiu, D. Jia, Y. Zhou, and P. Hu: Kirigami-inspired highly stretchable nanoscale devices using multidimensional deformation of monolayer MoS2. Chem. Mater. 30, 6063 (2018).

    Article  CAS  Google Scholar 

  65. M.K. Blees, A.W. Barnard, P.A. Rose, S.P. Roberts, K.L. McGill, P.Y. Huang, A.R. Ruyack, J.W. Kevek, B. Kobrin, D.A. Muller, and P.L. McEuen: Graphene kirigami. Nature 524, 204 (2015).

    Article  CAS  Google Scholar 

  66. K. Yong, S. De, E.Y. Hsieh, J. Leem, N.R. Aluru, and S. Nam: Kirigami-inspired strain-insensitive sensors based on atomically-thin materials. Mater. Today (2019). In press - https://doi.org/10.1016/j.mattod.2019.08.013.

  67. P. Gant, P. Huang, D. Pérez de Lara, D. Guo, R. Frisenda, and A. Castellanos-Gomez: A strain tunable single-layer MoS2 photodetector. Mater. Today 27, 8 (2019).

    Article  CAS  Google Scholar 

  68. H. Li, C. Tsai, A.L. Koh, L. Cai, A.W. Contryman, A.H. Fragapane, J. Zhao, H.S. Han, H.C. Manoharan, F. Abild-Pedersen, J.K. Nørskov, and X. Zheng: Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 15, 48 (2015).

    Article  CAS  Google Scholar 

  69. H.J. Conley, B. Wang, J.I. Ziegler, R.F. Haglund, S.T. Pantelides, and K.I. Bolotin: Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 13, 3626 (2013).

    Article  CAS  Google Scholar 

  70. K.A.N. Duerloo, Y. Li, and E.J. Reed: Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers. Nat. Commun. 5, 4214 (2014).

    Article  CAS  Google Scholar 

  71. C. Wang, Y. Liu, L. Li, and H. Tan: Anisotropic thermal conductivity of graphene wrinkles. Nanoscale 6, 5703 (2014).

    Article  CAS  Google Scholar 

  72. L. Cui, X. Du, G. Wei, and Y. Feng: Thermal conductivity of graphene wrinkles: A molecular dynamics simulation. J. Phys. Chem. C 120, 23807 (2016).

    Article  CAS  Google Scholar 

  73. S. Deng, A.V. Sumant, and V. Berry: Strain engineering in two-dimensional nanomaterials beyond graphene. Nano Today 22, 14 (2018).

    Article  CAS  Google Scholar 

  74. Z. Dai, L. Liu, and Z. Zhang: Strain engineering of 2D materials: Issues and opportunities at the interface. Adv. Mater. 31, 1 (2019).

    Google Scholar 

  75. T. Mueller and E. Malic: Exciton physics and device application of two-dimensional transition metal dichalcogenide semiconductors. npj 2D Mater. Appl. 2, 1 (2018).

    Article  CAS  Google Scholar 

  76. S.B. Desai, G. Seol, J.S. Kang, H. Fang, C. Battaglia, R. Kapadia, J.W. Ager, J. Guo, and A. Javey: Strain-induced indirect to direct bandgap transition in multilayer WSe2. Nano Lett. 14, 4592 (2014).

    Article  CAS  Google Scholar 

  77. I. Niehues, R. Schmidt, M. Drüppel, P. Marauhn, D. Christiansen, M. Selig, G. Berghäuser, D. Wigger, R. Schneider, L. Braasch, R. Koch, A. Castellanos-Gomez, T. Kuhn, A. Knorr, E. Malic, M. Rohlfing, S. Michaelis De Vasconcellos, and R. Bratschitsch: Strain control of exciton-phonon coupling in atomically thin semiconductors. Nano Lett. 18, 1751 (2018).

    Article  CAS  Google Scholar 

  78. J. Feng, X. Qian, C.W. Huang, and J. Li: Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nat. Photonics 6, 866 (2012).

    Article  CAS  Google Scholar 

  79. V.S. Mangu, M. Zamiri, S.R.J. Brueck, and F. Cavallo: Strain engineering, efficient excitonic photoluminescence, and exciton funnelling in unmodified MoS2 nanosheets. Nanoscale 9, 16602 (2017).

    Article  CAS  Google Scholar 

  80. A.V. Tyurnina, D.A. Bandurin, E. Khestanova, V.G. Kravets, M. Koperski, F. Guinea, A.N. Grigorenko, A.K. Geim, and I.V. Grigorieva: Strained bubbles in van der Waals heterostructures as local emitters of photoluminescence with adjustable wavelength. ACS Photonics 6, 516 (2019).

    Article  CAS  Google Scholar 

  81. D.F. Cordovilla Leon, Z. Li, S.W. Jang, C.H. Cheng, and P.B. Deotare: Exciton transport in strained monolayer WSe2. Appl. Phys. Lett. 113, 252101 (2018).

    Article  CAS  Google Scholar 

  82. C. Chakraborty, L. Kinnischtzke, K.M. Goodfellow, R. Beams, and A.N. Vamivakas: Voltage-controlled quantum light from an atomically thin semiconductor. Nat. Nanotechnol. 10, 507 (2015).

    Article  CAS  Google Scholar 

  83. Y.M. He, G. Clark, J.R. Schaibley, Y. He, M.C. Chen, Y.J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.Y. Lu, and J.W. Pan: Single quantum emitters in monolayer semiconductors. Nat. Nanotechnol. 10, 497 (2015).

    Article  CAS  Google Scholar 

  84. M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski: Single photon emitters in exfoliated WSe2 structures. Nat. Nanotechnol. 10, 503 (2015).

    Article  CAS  Google Scholar 

  85. A. Srivastava, M. Sidler, A.V. Allain, D.S. Lembke, A. Kis, and A. Imamoglu: Optically active quantum dots in monolayer WSe2. Nat. Nanotechnol. 10, 491 (2015).

    Article  CAS  Google Scholar 

  86. O. Iff, D. Tedeschi, J. Martín-Sánchez, M. Moczała-Dusanowska, S. Tongay, K. Yumigeta, J. Taboada-Gutiérrez, M. Savaresi, A. Rastelli, P. Alonso-González, S. Höfling, R. Trotta, and C. Schneider: Strain-tunable single photon sources in WSe2 monolayers. Nano Lett. 19, 6931 (2019).

    Article  CAS  Google Scholar 

  87. H. Kim, J.S. Moon, G. Noh, J. Lee, and J-H. Kim: Position and frequency control of strain-induced quantum emitters in WSe2 monolayers. Nano Lett. 19, 7534 (2019).

    Article  CAS  Google Scholar 

  88. D. Voiry, H. Yamaguchi, J. Li, R. Silva, D.C.B. Alves, T. Fujita, M. Chen, T. Asefa, V.B. Shenoy, G. Eda, and M. Chhowalla: Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 12, 850 (2013).

    Article  CAS  Google Scholar 

  89. S. Cho, S. Kim, J.H. Kim, J. Zhao, J. Seok, D.H. Keum, J. Baik, D.H. Choe, K.J. Chang, K. Suenaga, S.W. Kim, Y.H. Lee, and H. Yang: Phase patterning for ohmic homojunction contact in MoTe2. Science 349, 625 (2015).

    Article  CAS  Google Scholar 

  90. F. Zhang, H. Zhang, S. Krylyuk, C.A. Milligan, Y. Zhu, D.Y. Zemlyanov, L.A. Bendersky, B.P. Burton, A.V. Davydov, and J. Appenzeller: Electric-field induced structural transition in vertical MoTe2- and Mo1−xWxTe2-based resistive memories. Nat. Mater. 18, 55 (2019).

    Article  CAS  Google Scholar 

  91. W. Hou, A. Azizimanesh, A. Sewaket, T. Peña, C. Watson, M. Liu, H. Askari, and S.M. Wu: Strain-based room-temperature non-volatile MoTe2 ferroelectric phase change transistor. Nat. Nanotechnol. 14, 668 (2019).

    Article  CAS  Google Scholar 

  92. H.H. Huang, X. Fan, D.J. Singh, H. Chen, Q. Jiang, and W.T. Zheng: Controlling phase transition for single-layer MTe2 (M = Mo and W): Modulation of the potential barrier under strain. Phys. Chem. Chem. Phys. 18, 4086 (2016).

    Article  CAS  Google Scholar 

  93. S. Song, D.H. Keum, S. Cho, D. Perello, Y. Kim, and Y.H. Lee: Room temperature semiconductor-metal transition of MoTe2 thin films engineered by strain. Nano Lett. 16, 188 (2016).

    Article  CAS  Google Scholar 

  94. A. Apte, V. Kochat, P. Rajak, A. Krishnamoorthy, P. Manimunda, J.A. Hachtel, J.C. Idrobo, S.A. Syed Amanulla, P. Vashishta, A. Nakano, R.K. Kalia, C.S. Tiwary, and P.M. Ajayan: Structural phase transformation in strained monolayer MoWSe2 alloy. ACS Nano 12, 3468 (2018).

    Article  CAS  Google Scholar 

  95. H. Yang, S.W. Kim, M. Chhowalla, and Y.H. Lee: Structural and quantum-state phase transition in van der Waals layered materials. Nat. Phys. 13, 931 (2017).

    Article  CAS  Google Scholar 

  96. L. Webster and J.A. Yan: Strain-tunable magnetic anisotropy in monolayer CrCl3, CrBr3, and CrI3. Phys. Rev. B 98, 144411 (2018).

    Article  CAS  Google Scholar 

  97. Z. Wu, J. Yu, and S. Yuan: Strain-tunable magnetic and electronic properties of monolayer CrI3. Phys. Chem. Chem. Phys. 21, 7750 (2019).

    Article  CAS  Google Scholar 

  98. L.V. Butov, C.W. Lai, A.L. Ivanov, A.C. Gossard, and D.S. Chemla: Towards Bose–Einstein condensation of excitons in potential traps. Nature 417, 47 (2002).

    Article  CAS  Google Scholar 

  99. A.A. High, J.R. Leonard, A.T. Hammack, M.M. Fogler, L.V. Butov, A.V. Kavokin, K.L. Campman, and A.C. Gossard: Spontaneous coherence in a cold exciton gas. Nature 483, 584 (2012).

    Article  CAS  Google Scholar 

  100. C. Zhang, M.Y. Li, J. Tersoff, Y. Han, Y. Su, L.J. Li, D.A. Muller, and C.K. Shih: Strain distributions and their influence on electronic structures of WSe2-MoS2 laterally strained heterojunctions. Nat. Nanotechnol 13, 152 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

S.N. gratefully acknowledges support from the NSF (ECCS-1935775, CMMI-1554019, CMMI-1904216, DMR-1708852 and MRSEC DMR-1720633), AFOSR (FA2386-17-1-4071 and FA9550-18-1-0405), NASA ECF (NNX16AR56G), and ONR YIP (N00014-17-1-2830). C.C. gratefully acknowledge support from the NASA Space Technology Research Fellowship (80NSSC17K0149). This research was partially supported by the NSF through the University of Illinois at Urbana-Champaign Materials Research Science and Engineering Center DMR-1720633.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin Myung Kim or SungWoo Nam.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.M., Cho, C., Hsieh, E.Y. et al. Heterogeneous deformation of two-dimensional materials for emerging functionalities. Journal of Materials Research 35, 1369–1385 (2020). https://doi.org/10.1557/jmr.2020.34

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.34

Navigation