Skip to main content
Log in

Thermal reduction of graphene oxide: How temperature influences purity

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Among various methods used for the reduction of graphene oxide (GO) into a purer form of graphene, the thermal reduction method provides a simpler, safer, and economic alternative, compared to other techniques. Thermal reduction of GO causes significant weight loss and volume expansion of the material. Current work investigates the onset temperature where reduction in terms of exfoliation takes place, which is determined to be 325 °C at standard atmospheric pressure. Reduction temperature plays the most crucial role as it controls the quality of reduced graphene oxide in terms of weight percentage of carbon and lattice defect. The study leads to achieving highest content with a minimum defect in the graphene lattice at the optimum temperature, which is found to be 350 °C at standard atmospheric pressure. The thermal reduction process has been analyzed with the help of Fourier transform infrared spectroscopy, thermogravimetric analysis, and thermal degradation kinetics. From thermal degradation kinetics of GO, the rate of reaction has been found to be independent of concentration and is a sole function of temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. A.K. Geim and K.S. Novoselov: The rise of graphene. Nat. Mater. 6, 183 (2007).

    Article  CAS  Google Scholar 

  2. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov: Electric field effect in atomically thin carbon films. Science 306, 666 (2004).

    Article  CAS  Google Scholar 

  3. C. Berger, X. Wu, N. Brown, C. Naud, X. Li, Z. Song, D. Mayou, T. Li, J. Hass, A. Marchenkov, E.H. Conrad, P.N. First, and W.A. De Heer: Electronic confinement and coheraence in patterned epitaxial graphene. Science 312, 1191 (2006).

    Article  CAS  Google Scholar 

  4. R.B. Patel, C. Yu, T. Chou, and Z. Iqbal: Novel synthesis route to graphene using iron nanoparticles. J. Mater. Res. 29, 1522 (2014).

    Article  CAS  Google Scholar 

  5. A. Lerf, H. He, M. Forster, and J. Klinowski: Structure of graphite oxide revisited. J. Phys. Chem. B 102, 4477 (1998).

    Article  CAS  Google Scholar 

  6. A. Bagri, C. Mattevi, M. Acik, Y.J. Chabal, M. Chhowalla, and V.B. Shenoy: Structural evolution during the reduction of chemically derived graphene oxide. Nat. Chem. 2, 581 (2010).

    Article  CAS  Google Scholar 

  7. T. Szabó, O. Berkesi, P. Forgó, K. Josepovits, Y. Sanakis, D. Petridis, and I. Dékány: Evolution of surface functional groups in a series of progressively oxidized graphite oxides evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem. Mater. 18, 2740 (2006).

    Article  Google Scholar 

  8. B.C. Brodie: On the atomic weight of graphite. Philos. Trans. R. Soc. London 149, 249 (1859).

    Article  Google Scholar 

  9. L. Staudenmaier: Procedure for the preparation of graphitic acid. Ber. Dtsch. Chem. Ges. 32, 1394 (1899).

    Article  CAS  Google Scholar 

  10. W.S. Hummers and R.E. Offeman: Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958).

    Article  CAS  Google Scholar 

  11. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, and J.M. Tour: Improved synthesis of graphene oxide. ACS Nano 4, 4806 (2010).

    Article  CAS  Google Scholar 

  12. H. Yu, B. Zhang, C. Bulin, R. Li, and R. Xing: High-efficient synthesis of graphene oxide based on improved hummers method. Sci. Rep. 6, 36143 (2016).

    Article  CAS  Google Scholar 

  13. Y. Si and E.T. Samulski: Synthesis of water soluble graphene. Nano Lett 8, 1679 (2008).

    Article  CAS  Google Scholar 

  14. J. Lu, J. Yang, J. Wang, A. Lim, S. Wang, and K.P. Loh: One-pot synthesis of fluorescent carbon graphene by the exfoliation of graphite in ionic liquids. ACS Nano 3, 2367 (2009).

    Article  CAS  Google Scholar 

  15. W. Chen, L. Yan, and P.R. Bangal: Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon 48, 1146 (2010).

    Article  CAS  Google Scholar 

  16. Y. Zhu, S. Murali, M.D. Stoller, A. Velamakanni, R.D. Piner, and R.S. Ruoff: Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors. Carbon 48, 2118 (2010).

    Article  CAS  Google Scholar 

  17. Y.M. Shulga, S.A. Baskakov, E.I. Knerelman, G.I. Davidova, E.R. Badamshina, N.Y. Shulga, E.A. Skryleva, A.L. Agapov, D.N. Voylov, A.P. Sokolov, and V.M. Martynenko: Carbon nanomaterial produced by microwave exfoliation of graphite oxide: New insights. RSC Adv. 4, 587 (2014).

    Article  CAS  Google Scholar 

  18. I. Jung, D.A. Dikin, R.D. Piner, and R.S. Ruoff: Tunable electrical conductivity of individual graphene oxide sheets reduced at “low” temperatures. Nano Lett. 8, 4283 (2008).

    Article  CAS  Google Scholar 

  19. S. Pei and H.M. Cheng: The reduction of graphene oxide. Carbon 50, 3210 (2012).

    Article  CAS  Google Scholar 

  20. R. Larciprete, S. Fabris, T. Sun, P. Lacovig, A. Baraldi, and S. Lizzit: Dual path mechanism in the thermal reduction of graphene oxide. J. Am. Chem. Soc. 133, 17315 (2011).

    Article  CAS  Google Scholar 

  21. H-K. Jeong, Y.P. Lee, M.H. Jin, E.S. Kim, J.J. Bae, and Y.H. Lee: Thermal stability of graphite oxide. Chem. Phys. Lett. 470, 255 (2009).

    Article  CAS  Google Scholar 

  22. S. Xu, Z. Zhang, J. Liu, Y. Wang, and J. Hu: Facile preparation of reduced graphene by optimizing oxidation condition and further reducing the exfoliated products. J. Mater. Res. 32, 383 (2017).

    Article  CAS  Google Scholar 

  23. D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R.D. Piner, S. Stankovich, I. Jung, D.A. Field, C.A. Ventrice, and R.S. Ruoff: Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy. Carbon 47, 145 (2009).

    Article  CAS  Google Scholar 

  24. C. Mattevi, G. Eda, S. Agnoli, S. Miller, K.A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Carfunkel, and M. Chhowalla: Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Adv. Funct. Mater. 19, 2577 (2009).

    Article  CAS  Google Scholar 

  25. M.C. Kim, G.S. Hwang, and R.S. Ruoff: Epoxide reduction with hydrazine on graphene: A first principles study. J. Chem. Phys. 131, 1 (2009).

    Google Scholar 

  26. X. Gao, J. Jang, and S. Nagase: Hydrazine and thermal reduction of graphene oxide: Reaction mechanisms and design. J. Phys. Chem. C 114, 832 (2010).

    Article  CAS  Google Scholar 

  27. C.M. Chen, Q. Zhang, M.G. Yang, C.H. Huang, Y.G. Yang, and M.Z. Wang: Structural evolution during annealing of thermally reduced graphene nanosheets for application in supercapacitors. Carbon 50, 3572 (2012).

    Article  CAS  Google Scholar 

  28. S. Mao, H. Pu, and J. Chen: Graphene oxide and its reduction: Modeling and experimental progress. RSC Adv. 2, 2643 (2012).

    Article  CAS  Google Scholar 

  29. H.C. Schniepp, J.L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonson, D.H. Adamson, R.K. Prud’homme, R. Car, D.A. Seville, and I.A. Aksay: Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 110, 8535 (2006).

    Article  CAS  Google Scholar 

  30. G. Wang, J. Yang, J. Park, X. Gou, B. Wang, H. Liu, and J. Yao: Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. B 112, 8192 (2008).

    CAS  Google Scholar 

  31. R. Simões and V. Neto: Graphene oxide nanocomposites for potential wearable solar cells—A review. J. Mater. Res. 31, 1633 (2016).

    Article  Google Scholar 

  32. A. Jorio, E.H.M. Ferreira, M.V.O. Moutinho, F. Stavale, C.A. Achete, and R.B. Capaz: Measuring disorder in graphene with the G and D bands. Phys. Status Solidi B 247, 2980 (2010).

    Article  CAS  Google Scholar 

  33. Y. Hu: A simple reduction route to carbon hollow spheres. Indian J. Chem. 44, 2259 (2005).

    Google Scholar 

  34. A.W. Coats and J.P. Redfern: Kinetic parameters from thermogravimetric data. Nature 201, 68 (1964).

    Article  CAS  Google Scholar 

  35. S. Chakraborty, M. Kumar, K. Suresh, and G. Pugazhenthi: Investigation of structural, rheological and thermal properties of PMMA/ONi-Al LDH nanocomposites synthesized via solvent blending method: Effect of LDH loading. Chin. J. Polym. Sci. 34, 739 (2016).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors express their gratitude to the DST-FIST funded XPS laboratory at the Department of Physics and Meteorology, IIT Kharagpur, for their help in conducting the XPS analysis. The authors also acknowledge FESEM and XRD laboratory and Departmental Research Facility at the Department of Chemical Engineering, IIT Kharagpur, for their co-operation in carrying out the experiments and analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudipto Chakraborty.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sengupta, I., Chakraborty, S., Talukdar, M. et al. Thermal reduction of graphene oxide: How temperature influences purity. Journal of Materials Research 33, 4113–4122 (2018). https://doi.org/10.1557/jmr.2018.338

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.338

Navigation