Skip to main content
Log in

Annealing temperature-dependent crystallinity and photocurrent response of anodic nanoporous iron oxide film

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The effects of annealing temperatures on the structure and photocurrent response of nanoporous iron oxide film prepared by anodization of iron foil in an ethylene glycol, NH4F, and H2O electrolyte were studied. The as-anodized anodic film was found to be rather amorphous and crystallized to predominantly α-Fe2O3 upon annealing in nitrogen. Nitrogen was used as to reduce the thickening of the barrier layer which affects the photocurrent response of the oxide. However, annealing must be done above 300 °C to produce crystalline oxide but must be kept lower than 500 °C since high temperature promotes grain growth, destroying the nanoporous structure and also thickens the barrier layer, which significantly reduce the photocurrent of the film. Sample annealed at 450 °C in nitrogen has the highest photocurrent of 1.04 mA/cm2 (0.5 V versus Ag/AgCl in 1 M NaOH) compared to 0.13 mA/cm2 at 0.5 V for air-annealed sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12

Similar content being viewed by others

References

  1. M. Barroso, S.R. Pendlebury, A.J. Cowan, and J.R. Durrant: Charge carrier trapping, recombination and transfer in hematite (α-Fe2O3) water splitting photoanodes. Chem. Sci. 4, 2724–2734 (2013).

    Article  CAS  Google Scholar 

  2. J.H. Kennedy and K.W. Frese: Photooxidation of water at α-Fe2O3 electrodes. J. Electrochem. Soc. 125, 709–714 (1978).

    Article  CAS  Google Scholar 

  3. S. Shen: Toward efficient solar water splitting over hematite photoelectrodes. J. Mater. Res. 29(01), 29–46 (2014).

    Article  CAS  Google Scholar 

  4. H. Nishikiori, W. Qian, M.A. El-Sayed, N. Tanaka, and T. Fujii: Change in titania structure from amorphousness to crystalline increasing photoinduced electron-transfer rate in dye-titania system. J. Phys. Chem. C 111, 9008–9011 (2007).

    Article  CAS  Google Scholar 

  5. N. Uekawa and K. Kaneko: Nonstoichiometric properties of nanoporous iron oxide films. J. Phys. Chem. B 102, 8719–8724 (1998).

    Article  CAS  Google Scholar 

  6. S.P. Albu, A. Ghicov, and P. Schmuki: High aspect ratio, self-ordered iron oxide nanopores formed by anodization of Fe in ethylene glycol/NH4F electrolytes. Phys. Status Solidi RRL 3, 64–66 (2009).

    Article  CAS  Google Scholar 

  7. H. Habazaki, Y. Konno, Y. Aoki, P. Skeldon, and G.E. Thompson: Galvanostatic growth of nanoporous anodic films on iron in ammonium flouride-ethylene glycol electrolytes with different water contents. J. Phys. Chem. C 114, 18853–18859 (2010).

    Article  CAS  Google Scholar 

  8. A. Jagminas, K. Mazeika, N. Bernotas, V. Klimas, A. Selskis, and D. Baltrunas: Compositional and structural characterization of nanoporous produced by iron anodizing in ethylene glycol. Appl. Surf. Sci. 257, 3893–3897 (2011).

    Article  CAS  Google Scholar 

  9. Y. Konno, E. Tsuji, P. Skeldon, G.E. Thompson, and H. Habazaki: Factors influencing the growth behaviour of nanoporous anodic films on iron under galvanostatic anodizing. J. Solid State Electrochem. 16, 3887–3896 (2012).

    Article  CAS  Google Scholar 

  10. H.E. Prakasam, O.K. Varghese, M. Paulose, G.K. Mor, and C.A. Grimes: Synthesis and photoelectrochemical properties of nanoporous iron (III) oxide by potentiostatic anodization. Nanotechnology 17, 4285–4291 (2006).

    Article  CAS  Google Scholar 

  11. H. Cheng, L. Zheng, C.K. Tsang, J. Zhang, H.E. Wang, Y. Dong, H. Li, F. Liang, J.A. Zapien, and Y.Y. Li: Electrochemical fabrication and optical properties of periodically structured porous Fe2O3 films. Electrochem. Commun. 20, 178–181 (2012).

    Article  Google Scholar 

  12. Z. Zhang, M.F. Hossain, and T. Takahashi: Fabrication of shape-controlled α-Fe2O3 nanostructures by sonoelectrochemical anodization for visible light photocatalytic application. Mater. Lett. 64, 435–438 (2010).

    Article  CAS  Google Scholar 

  13. M. Rozana, M.A. Azhar, D.M. Anwar, G. Kawamura, A.R. Khairunisak, A. Matsuda, and Z. Lockman: Effect of applied voltage on the formation of self-organized iron oxide nanoporous film in organic electrolyte via anodic oxidation process and their photocurrent performance. Adv. Mater. Res. 1024, 99–103 (2014).

    Article  CAS  Google Scholar 

  14. U. Schwertmann and R. Cornell: The Iron Oxides (Wiley-VCH GmbH & Co. KGaA, Weinhem, 2003).

    Google Scholar 

  15. C.Y. Lee, L. Wang, Y. Kado, M.S. Killian, and P. Schmuki: Anodic nanotubular/porous hematite photoanode for solar water splitting: Substantial effect of iron substrate purity. ChemSusChem 7, 934–940 (2014).

    Article  CAS  Google Scholar 

  16. M.I. Nagayama and M. Cohen: The anodic oxidation of iron in a neutral solution: I. The nature and composition of the passive film. J. Electrochem. Soc. 109, 781–790 (1962).

    Article  CAS  Google Scholar 

  17. Z. Szklarska-Smialowska: Mechanism of pit nucleation by electrical breakdown of the passive film. Corros. Sci. 44, 1143–1149 (2002).

    Article  CAS  Google Scholar 

  18. D. Regonini, C.R. Bowen, A. Jaroenworaluck, and R. Stevens: A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes. Mater. Sci. Eng., R 74, 377–406 (2013).

    Article  Google Scholar 

  19. P. Schmuki: From Bacon to barriers: A review on the passivity of metals and alloys. J. Solid State Electrochem. 6, 145–164 (2002).

    Article  CAS  Google Scholar 

  20. K. Yasuda, J.M. Macak, S. Berger, A. Ghicov, and P. Schmuki: Mechanistic aspects of the self-organization process for oxide nanotube formation on valve metals. J. Electrochem. Soc. 154, C472–C478 (2007).

    Article  CAS  Google Scholar 

  21. R.Y. Chen and W.Y.D. Yeun: Review of the high-temperature oxidation of iron and carbon steels in air or oxygen. Oxid. Met. 59, 433–468 (2003).

    Article  CAS  Google Scholar 

  22. D. Bersani, P.P. Lottici, and A. Montenero: Micro-Raman investigation of iron oxide films and powders produced by sol–gel syntheses. J. Raman Spectrosc. 30, 355–360 (1999).

    Article  CAS  Google Scholar 

  23. D.L.A. de Faria, S. Venâncio Silva, and M.T. de Oliveira: Raman microspectroscopy of some iron oxides and oxyhydroxides. J. Raman Spectrosc. 28, 873–878 (1997).

    Article  Google Scholar 

  24. M. Hanesch: Raman spectroscopy of iron oxides and (oxy)hydroxides at low laser power and possible applications in environmental magnetic studies. Geophys. J. Int. 177, 941–948 (2009).

    Article  CAS  Google Scholar 

  25. M.K. Nieuwoudt, J.D. Comins, and I. Cukrowski: The growth of the passive film on iron in 0.05 M NaOH studied in situ by Raman micro-spectroscopy and electrochemical polarisation. Part I: Near-resonance enhancement of the Raman spectra of iron oxide and oxyhydroxide compounds. J. Raman Spectrosc. 42, 1335–1339 (2011).

    Article  CAS  Google Scholar 

  26. S. Oh, D.C. Cook, and H.E. Townsend: Characterization of iron oxides commonly formed as corrosion products on steel. Hyperfine Interact. 112, 59–66 (1998).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful for support by the ASEAN University Network/Southeast Asia Engineering Education Development Network (AUN/SEED-Net), Japan International Cooperation Agency (JICA). Nanomaterials development is supported by OneBAJA Long Term Research Grant Scheme (LRGS), Ministry of Higher Education Malaysia, Project 2, 304/PBAHAN/6050235.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Monna Rozana or Zainovia Lockman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rozana, M., Razak, K.A., Yew, C.K. et al. Annealing temperature-dependent crystallinity and photocurrent response of anodic nanoporous iron oxide film. Journal of Materials Research 31, 1681–1690 (2016). https://doi.org/10.1557/jmr.2016.206

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.206

Navigation