Skip to main content
Log in

Shear and shuffle in \(\left\{{11\bar 22} \right\}\left\langle {11\bar 2\bar 3} \right\rangle\) twinning in titanium

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

An Erratum to this article was published on 01 August 2016

This article has been updated

Abstract

In classical twinning theory, the K2 plane of \(\left\{{11\bar 22} \right\}\left\langle {11\bar 2\bar 3} \right\rangle\) twinning mode was predicted to be \(\left\{{11\bar 2\bar 4} \right\}\), with a twinning shear of ∼0.22 which was experimentally “confirmed”. However, these twinning elements cannot be reproduced or verified in atomistic simulations. The K2 plane in the simulations is always (0001), but this K2 plane would lead to a nominal twining shear of 1.26 which is unrealistically large. In this work, atomistic simulations were performed to investigate the migration of \(\left\{{11\bar 22} \right\}\) twin boundary in titanium (Ti). Shear and atomic shuffles for three different, reported K2 planes were analyzed in great detail, for the first time. The analyses show that \({K_2} = \left\{{11\bar 2\bar 4} \right\}\) leads to very complex shuffles despite the small twinning shear and is unfavorable. If \({K_2} = \left\{{11\bar 2\bar 2} \right\}\), only half of the parent atoms are involved in the shuffling, but the twinning shear is very large (0.96) and is also unfavorable. When K2 = (0001), the parent atoms are carried to twin positions partly by shear and partly by a simple shuffle. Because shuffling makes no contribution to the twinning shear, the actual twinning shear is 0.66, instead of 1.26. Thus, K2 = (0001) is the most favorable and the conflict between the simulation results and the classical twinning theory can be reconciled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

Change history

References

  1. B.E. Reed-Hill and E.R. Buchanan: Zig-zag twins in zirconium. Acta Metall. 11, 73–75 (1963). doi: 10.1016/0001-6160(63)90133-0.

    Article  CAS  Google Scholar 

  2. R.E. Reed-Hill and W.D. Robertson: Additional modes of deformation twinning in magnesium. Acta Metall. 5, 717–727 (1957). doi: 10.1016/0001-6160(57)90074-3.

    Article  CAS  Google Scholar 

  3. D.G. Westlake: Twinning in zirconium. Acta Metall. 9, 327–331 (1961). doi: 10.1016/0001-6160(61)90226-7.

    Article  CAS  Google Scholar 

  4. B.C. Wonsiewicz and W.A. Backofen: Plasticity of magnesium crystals. Trans. Metall. Soc. AIME 239, 1422–1431 (1967).

    CAS  Google Scholar 

  5. E.W. Kelley and W.F. Hosford, Jr.: The deformation characteristics of textured magnesium. Trans. Metall. Soc. AIME 242, 654–661 (1968).

    CAS  Google Scholar 

  6. J.W. Christian and S. Mahajan: Deformation twinning. Prog. Mater. Sci. 39, 1–157 (1995). doi: 10.1016/0079-6425(94)00007-7.

    Article  Google Scholar 

  7. N. Thompson and D.J. Millard: XXXVIII. Twin formation, in cadmium. Philos. Mag. Ser 7(43), 422–440 (1952). doi: 10.1080/14786440408520175.

    Article  Google Scholar 

  8. F.R.N. Nabarro ed.: Dislocations in Solids: Dislocations in Crystals, Vol. 2 (North-Holland Publishing Co, Amsterdam, 1979).

    Google Scholar 

  9. S. Mendelson: Zonal dislocations and twin lamellae in h.c.p. metals. Mater. Sci. Eng. 4, 231–242 (1969). doi: 10.1016/0025-5416(69)90067-6.

    Article  CAS  Google Scholar 

  10. B. Li and E. Ma: Zonal dislocations mediating twinning in magnesium. Acta Mater. 57, 1734–1743 (2009). doi: 10.1016/j.actamat.2008.12.016.

    Article  CAS  Google Scholar 

  11. B. Li, B.Y. Cao, K.T. Ramesh, and E. Ma: A nucleation mechanism of deformation twins in pure aluminum. Acta Mater. 57, 4500–4507 (2009). doi: 10.1016/j.actamat.2009.06.014.

    Article  CAS  Google Scholar 

  12. S. Mahajan and G.Y. Chin: Formation of deformation twins in f.c.c. crystals. Acta Metall. 21, 1353–1363 (1973). doi: 10.1016/0001-6160(73)90085-0.

    Article  CAS  Google Scholar 

  13. B.A. Bilby and A.G. Crocker: The theory of the crystallography of deformation twinning. Proc. R. Soc. London, Ser. A 288, 240–255 (1965). doi: 10.1098/rspa.1965.0216.

    Article  CAS  Google Scholar 

  14. E.J. Rapperport: Room temperature deformation processes in zirconium. Acta Metall. 7, 254–260 (1959). doi: 10.1016/0001-6160(59)90018-5.

    Article  Google Scholar 

  15. N.E. Paton and W.A. Backofen: Plastic deformation of titanium at elevated temperatures. Metall. Trans. 1, 2839–2847 (1970).

    CAS  Google Scholar 

  16. F. Xu, X. Zhang, H. Ni, and Q. Liu: Deformation twinning in pure Ti during dynamic plastic deformation. Mater. Sci. Eng., A 541, 190–195 (2012). doi: 10.1016/j.msea.2012.02.021.

    Article  CAS  Google Scholar 

  17. T.A. Mason, J.F. Bingert, G.C. Kaschner, S.I. Wright, and R.J. Larsen: Advances in deformation twin characterization using electron backscattered diffraction data. Metall. Mater. Trans. A 33, 949–954 (2002). doi: 10.1007/s11661-002-1027-z.

    Article  Google Scholar 

  18. A. Serra and D.J. Bacon: Modelling the motion of {1122} twinning dislocations in the hcp metals. Mater. Sci. Eng., A 400–401, 496–498 (2005). doi: 10.1016/j.msea.2005.01.067.

    Article  Google Scholar 

  19. B. Li, H. El Kadiri, and M.F. Horstemeyer: Extended zonal dislocations mediating twinning in titanium. Philos. Mag. 92, 1006–1022 (2012). doi: 10.1080/14786435.2011.637985.

    Article  CAS  Google Scholar 

  20. M.S. Daw and M.I. Baskes: Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Phys. Rev. Lett. 50, 1285–1288 (1983). doi: 10.1103/PhysRevLett.50.1285.

    Article  CAS  Google Scholar 

  21. M.S. Daw and M.I. Baskes: Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29, 6443–6453 (1984). doi: 10.1103/PhysRevB.29.6443.

    Article  CAS  Google Scholar 

  22. R.R. Zope and Y. Mishin: Interatomic potentials for atomistic simulations of the Ti-Al system. Phys. Rev. B 68, 024102 (2003). doi: 10.1103/PhysRevB.68.024102.

    Article  Google Scholar 

  23. M. Niewczas: Lattice correspondence during twinning in hexagonal close-packed crystals. Acta Mater. 58, 5848–5857 (2010). doi: 10.1016/j.actamat.2010.06.059.

    Article  CAS  Google Scholar 

  24. E.O. Hall: Twinning and Diffusionless Transformations in Metals (Butterworth, London, 1954).

    Google Scholar 

  25. S. Mendelson: Dislocation dissociations in hcp metals. J. Appl. Phys. 41, 1893–1910 (1970). doi: 10.1063/1.1659139.

    Article  CAS  Google Scholar 

  26. M.L. Kronberg: Plastic deformation of single crystals of sapphire: Basal slip and twinning. Acta Metall. 5, 507–524 (1957). doi: 10.1016/0001-6160(57)90090-1.

    Article  CAS  Google Scholar 

  27. Q. Yu, Z-W. Shan, J. Li, X. Huang, L. Xiao, J. Sun, and E. Ma: Strong crystal size effect on deformation twinning. Nature 463, 335–338 (2010). doi: 10.1038/nature08692.

    Article  CAS  Google Scholar 

  28. R. Abbaschian, L. Abbaschian, and R.E. Reed-Hill: Physical Metallurgy Principles, 4th ed. (Cengage Learning: India, 2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B. Shear and shuffle in \(\left\{{11\bar 22} \right\}\left\langle {11\bar 2\bar 3} \right\rangle\) twinning in titanium. Journal of Materials Research 30, 3795–3802 (2015). https://doi.org/10.1557/jmr.2015.371

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.371

Navigation