Skip to main content
Log in

Evaluation of three-dimensional silver-doped borate bioactive glass scaffolds for bone repair: Biodegradability, biocompatibility, and antibacterial activity

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The development of synthetic scaffolds with a desirable combination of properties, such as bioactivity, the ability to locally deliver antibacterial agents and high osteogenic capacity, is a challenging but promising approach in bone tissue engineering. In this study, scaffolds of a borosilicate bioactive glass (composition: 6Na2O, 8K2O, 8MgO, 22CaO, 36B2O3, 18SiO2, 2P2O5; mol%) with controllable antibacterial activity were developed by doping the parent glass with varying amounts of Ag2O (0.05, 0.5, and 1.0 wt%). The addition of the Ag2O lowered the compressive strength and degradation of the bioactive glass scaffolds but it did not affect the formation of hydroxyapatite on the surface of the glass as determined by energy dispersive x-ray analysis, x-ray diffraction, and Fourier transform infrared analysis. The Ag2O-doped scaffolds showed a sustained release of Ag ions over more than 8 weeks in simulated body fluid and resistance against colonization by the bacterial strains Escherichia coli and Staphylococcus aureus. In vitro cell culture showed better adhesion, proliferation, and alkaline phosphatase activity of murine osteoblastic MC3T3-E1 cells on the Ag2O-doped bioactive glass scaffolds than on the undoped scaffolds. The results indicate that these Ag-doped borosilicate bioactive glass scaffolds may have potential in repairing bone coupled with providing a lower risk of bacterial infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12

Similar content being viewed by others

References

  1. F. Yang, J. Wang, J. Hou, H. Guo, and C.S. Liu: Bone regeneration using cell-mediated responsive degradable PEG-based scaffolds incorporating with rhBMP-2. Biomaterials 34(5), 1514 (2013).

    Article  CAS  Google Scholar 

  2. L. Pauksch, S. Hartmann, M. Rohnke, G. Szalay, V. Alt, R. Schnettler, and K.S. Lips: Biocompatibility of silver nanoparticles and silver ions in primary human mesenchymal stem cells and osteoblasts. Acta Biomater. 10(1), 439 (2014).

    Article  CAS  Google Scholar 

  3. A. Renaud, M. Lavigne, and P-A. Vendittoli: Periprosthetic joint infections at a teaching hospital in 1990–2007. Can. J. Surg. 55(6), 394 (2012).

    Article  Google Scholar 

  4. A.M. Henslee, P.P. Spicer, D.M. Yoon, M.B. Nair, V.V. Meretoja, K.E. Witherel, J.A. Jansen, A.G. Mikos, and F.K. Kasper: Biodegradable composite scaffolds incorporating an intramedullary rod and delivering bone morphogenetic protein-2 for stabilization and bone regeneration in segmental long bone defects. Acta Biomater. 7(10), 3627 (2011).

    Article  CAS  Google Scholar 

  5. J.H. Ye, Y.J. Xu, J. Gao, S.G. Yan, J. Zhao, Q.S. Tu, J. Zhang, X.J. Duan, C.A. Sommer, G. Mostoslavsky, D.L. Kaplan, Y.N. Wu, C.P. Zhang, L. Wang, and J. Chen: Critical-size calvarial bone defects healing in a mouse model with silk scaffolds and SATB2-modified iPSCs. Biomaterials 32(22), 5065 (2011).

    Article  CAS  Google Scholar 

  6. W. Cao and L.L. Hench: Bioactive materials. Ceram. Int. 22(6), 493 (1996).

    Article  CAS  Google Scholar 

  7. O. Tsigkou, J.R. Jones, J.M. Polak, and M.M. Stevens: Differentiation of fetal osteoblasts and formation of mineralized bone nodules by 45S5 Bioglass® conditioned medium in the absence of osteogenic supplements. Biomaterials 30(21), 3542 (2009).

    Article  CAS  Google Scholar 

  8. J. Sun, L. Wei, X. Liu, J. Li, B. Li, G. Wang, and F. Meng: Influences of ionic dissolution products of dicalcium silicate coating on osteoblastic proliferation, differentiation and gene expression. Acta Biomater. 5(4), 1284 (2009).

    Article  CAS  Google Scholar 

  9. W. Liang, M.N. Rahaman, D.E. Day, N.W. Marion, G.C. Riley, and J.J. Mao: Bioactive borate glass scaffold for bone tissue engineering. J. Non-Cryst. Solids 354(15), 1690 (2008).

    Article  CAS  Google Scholar 

  10. X. Zhang, W. Jia, Y. Gu, W. Xiao, X. Liu, D. Wang, C. Zhang, W. Huang, M.N. Rahaman, and D.E. Day: Teicoplanin-loaded borate bioactive glass implants for treating chronic bone infection in a rabbit tibia osteomyelitis model. Biomaterials 31(22), 5865 (2010).

    Article  CAS  Google Scholar 

  11. X. Han and D.E. Day: Reaction of sodium calcium borate glasses to form hydroxyapatite. J. Mater. Sci.: Mater. Med. 18(9), 1837 (2007).

    CAS  Google Scholar 

  12. W. Huang, D.E. Day, K. Kittiratanapiboon, and M.N. Rahaman: Kinetics and mechanisms of the conversion of silicate (45S5), borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solutions. J. Mater. Sci.: Mater. Med. 17(7), 583 (2006).

    CAS  Google Scholar 

  13. F.H. Nielsen: The emergence of boron as nutritionally important throughout the life cycle. Nutrition 16(7), 512 (2000).

    Article  CAS  Google Scholar 

  14. L.A.H. Durand, A. Gongora, J.M.P. Lopez, A.R. Boccaccini, M.P. Zago, A. Baldi, and A. Gorustovich: In vitro endothelial cell response to ionic dissolution products from boron-doped bioactive glass in the SiO2-CaO-P2O5-Na2O system. J. Mater. Chem. B 2(43), 7620 (2014).

    Article  CAS  Google Scholar 

  15. R. Forrer, C. Wenker, K. Gautschi, and H. Lutz: Concentration of 17 trace elements in serum and whole blood of plains viscachas (Lagostomus maximus) by ICP-MS, their reference ranges, and their relation to cataract. Biol. Trace Elem. Res. 81(1), 47 (2001).

    Article  CAS  Google Scholar 

  16. R. Forrer, K. Gautschi, and H. Lutz: Simultaneous measurement of the trace elements Al, As, B, Be, Cd, Co, Cu, Fe, Li, Mn, Mo, Ni, Rb, Se, Sr, and Zn in human serum and their reference ranges by ICP-MS. Biol. Trace Elem. Res. 80(1), 77 (2001).

    Article  CAS  Google Scholar 

  17. L. Bi, S. Jung, D. Day, K. Neidig, V. Dusevich, D. Eick, and L. Bonewald: Evaluation of bone regeneration, angiogenesis, and hydroxyapatite conversion in critical-sized rat calvarial defects implanted with bioactive glass scaffolds. J. Biomed. Mater. Res., Part A 100(12), 3267 (2012).

    Article  CAS  Google Scholar 

  18. A.G. Gristina, P.T. Naylor, and Q.N. Myrvik: Biomaterial-centered infections: Microbial adhesion versus tissue integration. In Pathogenesis of Wound and Biomaterial-Associated Infections, (Springer, London, UK, 1990); p. 193.

    Google Scholar 

  19. O. Choi, K.K. Deng, N-J. Kim, L. Ross, Jr., R.Y. Surampalli, and Z. Hu: The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res. 42(12), 3066 (2008).

    Article  CAS  Google Scholar 

  20. K. Kalishwaralal, S. BarathManiKanth, S.R.K. Pandian, V. Deepak, and S. Gurunathan: Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloids Surf., B 79(2), 340 (2010).

    Article  CAS  Google Scholar 

  21. D.J.F. Moojen, S.N. Spijkers, C.S. Schot, M.W. Nijhof, H.C. Vogely, A. Fleer, A.J. Verbout, R.M. Castelein, W.J. Dhert, and L.M. Schouls: Identification of orthopaedic infections using broad-range polymerase chain reaction and reverse line blot hybridization. J. Bone Jt. Surg. 89(6), 1298 (2007).

    Article  Google Scholar 

  22. L. Harris, S. Tosatti, M. Wieland, M. Textor, and R. Richards: Staphylococcus aureus adhesion to titanium oxide surfaces coated with non-functionalized and peptide-functionalized poly (l-lysine)-grafted-poly (ethylene glycol) copolymers. Biomaterials 25(18), 4135 (2004).

    Article  CAS  Google Scholar 

  23. J.L. Clement and P.S. Jarrett: Antibacterial silver. Met.-Based Drugs 1(5–6), 467 (1994).

    Article  CAS  Google Scholar 

  24. S. Percival, P. Bowler, and D. Russell: Bacterial resistance to silver in wound care. J. Hosp. Infect. 60(1), 1 (2005).

    Article  CAS  Google Scholar 

  25. X. Liu, W. Huang, H. Fu, A. Yao, D. Wang, H. Pan, and W.W. Lu: Bioactive borosilicate glass scaffolds: Improvement on the strength of glass-based scaffolds for tissue engineering. J. Mater. Sci.: Mater. Med. 20(1), 365 (2009).

    CAS  Google Scholar 

  26. T. Kokubo and H. Takadama: How useful is SBF in predicting in vivo bone bioactivity?Biomaterials 27(15), 2907 (2006).

    Article  CAS  Google Scholar 

  27. G.N. King, N. King, and F.J. Hughes: Effect of two delivery systems for recombinant human bone morphogenetic protein-2 on periodontal regeneration in vivo. J. Periodontal Res. 33(3), 226 (1998).

    Article  CAS  Google Scholar 

  28. F. Zheng, S. Wang, S. Wen, M. Shen, M. Zhu, and X. Shi: Characterization and antibacterial activity of amoxicillin-loaded electrospun nano-hydroxyapatite/poly (lactic-co-glycolic acid) composite nanofibers. Biomaterials 34(4), 1402 (2013).

    Article  CAS  Google Scholar 

  29. M. Erol, V. Mouriňo, P. Newby, X. Chatzistavrou, J. Roether, L. Hupa, and A.R. Boccaccini: Copper-releasing, boron-containing bioactive glass-based scaffolds coated with alginate for bone tissue engineering. Acta Biomater. 8(2), 792 (2012).

    Article  CAS  Google Scholar 

  30. A. Boronin, S. Koscheev, and G. Zhidomirov: XPS and UPS study of oxygen states on silver. J. Electron Spectrosc. Relat. Phenom. 96(1–3), 43 (1998).

    Article  CAS  Google Scholar 

  31. X. Liu, M.N. Rahaman, and D.E. Day: Conversion of melt-derived microfibrous borate (13-93B3) and silicate (45S5) bioactive glass in a simulated body fluid. J. Mater. Sci.: Mater. Med. 24(3), 583 (2013).

    CAS  Google Scholar 

  32. J.R. Jones and L.L. Hench: Factors affecting the structure and properties of bioactive foam scaffolds for tissue engineering. J. Biomed. Mater. Res., Part B 68(1), 36 (2004).

    Article  CAS  Google Scholar 

  33. Z. Ma, M. Kotaki, R. Inai, and S. Ramakrishna: Potential of nanofiber matrix as tissue-engineering scaffolds. Tissue Eng. 11(1–2), 101 (2005).

    Article  Google Scholar 

  34. C. Baer, R. Foldbjerg, Y. Hayashi, D.S. Sutherlans, and H. Autrup: Toxicity of silver nanoparticles—Nanoparticle or silver ion? Toxicol. Lett. 208, 286 (2012).

    Article  CAS  Google Scholar 

  35. S. Kittler, C. Greulich, J. Diendorf, M. Koller, and M. Epple: Toxicity of silver nanoparticles increases during storage because of dissolution of slow dissolution under release of silver ions. Chem. Mater. 22, 4548 (2010).

    Article  CAS  Google Scholar 

  36. M.V. Park, A.M. Neigh, J.P. Vermeulen, L.J. de la Fonteyne, H.W. Verharen, J.J. Briedé, and H. van Loveren and W.H. de Jong: The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials 32(36), 9810 (2011).

    Article  CAS  Google Scholar 

  37. P. AshaRani, G. Low Kah Mun, M.P. Hande, and S. Valiyaveettil: Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3(2), 279 (2008).

    Article  CAS  Google Scholar 

  38. M. Rai, A. Yadav, and A. Gade: Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 27(1), 76 (2009).

    Article  CAS  Google Scholar 

  39. C.E. Albers, W. Hofstetter, K.A. Siebenrock, R. Landmann, and F.M. Klenke: In vitro cytotoxicity of silver nanoparticles on osteoblasts and osteoclasts at antibacterial concentrations. Nanotoxicology 7(1), 30 (2013).

    Article  CAS  Google Scholar 

  40. A. Ewald, D. Hösel, S. Patel, L.M. Grover, J.E. Barralet, and U. Gbureck: Silver-doped calcium phosphate cements with antimicrobial activity. Acta Biomater. 7(11), 4064 (2011).

    Article  CAS  Google Scholar 

  41. C.D. Hunt: Dietary boron: Progress in establishing essential roles in human physiology. J. Trace Elem. Med. Biol. 26(2), 157 (2012).

    Article  CAS  Google Scholar 

  42. M. Park, Q. Li, N. Shcheynikov, W. Zeng, and S. Muallem: NaBC1 is a ubiquitous electrogenic Na+-coupled borate transporter essential for cellular boron homeostasis and cell growth and proliferation. Mol. Cell 16(3), 331 (2004).

    Article  CAS  Google Scholar 

  43. A.A. Gorustovich, J.M.P. López, M.B. Guglielmotti, and R.L. Cabrini: Biological performance of boron-modified bioactive glass particles implanted in rat tibia bone marrow. Biomed. Mater. 1(3), 100 (2006).

    Article  CAS  Google Scholar 

  44. K.M. Reddy, K. Feris, J. Bell, D.G. Wingett, C. Hanley, and A. Punnoose: Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl. Phys. Lett. 90(21), 213902 (2007).

    Article  CAS  Google Scholar 

  45. M.A. Kohanski, D.J. Dwyer, and J.J. Collins: How antibiotics kill bacteria: From targets to networks. Nat. Rev. Microbiol. 8(6), 423 (2010).

    Article  CAS  Google Scholar 

  46. K.A. Brogden: Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria?Nat. Rev. Microbiol. 3(3), 238 (2005).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Science and Technology Commission of Shanghai Municipality (Grant No. 12JC1408500) and the National Natural Science Foundation, China (Grant Nos. 51072133, 81201377 and 51372170).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changqing Zhang or Deping Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Zhao, S., Cui, X. et al. Evaluation of three-dimensional silver-doped borate bioactive glass scaffolds for bone repair: Biodegradability, biocompatibility, and antibacterial activity. Journal of Materials Research 30, 2722–2735 (2015). https://doi.org/10.1557/jmr.2015.243

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.243

Navigation