Skip to main content
Log in

Degradation susceptibility of surgical magnesium alloy in artificial biological fluid containing albumin

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The objective of this study is to investigate the corrosion susceptibility of surgical AZ91 magnesium alloys in simulated body fluids (SBFs) consisting of bovine serum albumin (BSA) and acidic SBFs (pH 5) using electrochemical methods. The addition of BSA significantly moves the open-circuit potential toward a more positive value and suppresses the corrosion reaction. The corrosion resistance under the open-circuit conditions in the SBFs with 1 g/L BSA is approximately twice that in the SBFs. A higher BSA concentration decreases the corrosion susceptibility. In addition, the acidic SBF results in a higher alloy dissolution rate. The possible mechanisms are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

TABLE I.
FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
TABLE II.

Similar content being viewed by others

References

  1. J.R. Davis: Handbook of Materials for Medical Devices ASM International, Warrendale, OH 2003 16

    Google Scholar 

  2. A. Gefen: Computational simulations of stress shielding and bone resorption around existing and computer-designed orthopaedic screws. Med. Biol. Eng. Comput. 40, 311 2002

    Article  CAS  Google Scholar 

  3. S.G. Steinemann: Metal implants and surface reactions. Injury 27(3), S–C16 1996

    Google Scholar 

  4. F. Witte, V. Kaese, H. Haferkamp, E. Switzer, C.J. Wirth H. Windhagen: In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 26, 3557 2005

    Article  CAS  Google Scholar 

  5. F. Witte, J. Fischer, J. Nellesen, H. Windhagen: In vitro and in vivocorrosion measurements of magnesium alloys. Biomaterials 27, 1013 2006

    Article  CAS  Google Scholar 

  6. L.C. Li, J.C. Gao Y. Wang: Corrosion behaviors and surface modification of magnesium alloys for biomaterial applications. Mater. Rev. 17(10), 29 2003

    Google Scholar 

  7. H. Inoue, K. Sugahara, A. Yamamoto H. Tsuakino: Corrosion rate of magnesium and its alloys in buffered chloride solutions. Corros. Sci. 44, 603 2002

    Article  CAS  Google Scholar 

  8. S.M. Woodward A.V. Gershun: Engine Coolant Testing American Society for Testing and Materials, Philadelphia 1993 234

    Google Scholar 

  9. G.L. Song: Recent progress in corrosion and protection of magnesium alloys. Adv. Eng. Mater. 7, 563 2005

    Article  CAS  Google Scholar 

  10. E. Gulbrandsen: Anodic behavior of Mg in HCO3/ CO2−3 buffer solutions: Quasi-steady measurements. Electrochim. Acta 37, 1403 1992

    Article  CAS  Google Scholar 

  11. J.B. Park: Biomaterials: An Introduction Plenum Press, New York 1979 187–193

    Book  Google Scholar 

  12. X.L. Cheng S.G. Roscoe: Corrosion behavior of titanium in the presence of calcium phosphate and serum proteins. Biomaterials 26, 7350 2005

    Article  CAS  Google Scholar 

  13. S. Omanovic S.G. Roscoe: Electrochemical studies of the adsorption behavior of bovine serum albumin on stainless steel. Langmuir 83, 15 1999

    Google Scholar 

  14. G.C.F. Clark D.F. Williams: The effects of proteins of proteins on metallic corrison. J. Biomed. Mater. Res. 16, 125 1982

    Article  CAS  Google Scholar 

  15. S. Takemoto, M. Hattori, M. Yoshinari, E. Kawada Y. Oda: Corrosion behavior and surface characterization of titanium in solution containing fluoride and albumin. Biomaterials 26, 829 2005

    Article  CAS  Google Scholar 

  16. M.A. Khan, R.L. Williams D.F. Williams: The corrosion behavior of Ti–6Al–4V, Ti–6Al–7Nb and Ti–13Nb–13Zr in protein solutions. Biomaterials 20, 631 1999

    Article  CAS  Google Scholar 

  17. M.V. Popa, I. Demetrescu, E. Vasilesce D. Ionita: Corrosion susceptibility of implant materials Ti–5Al–4V and Ti–6Al–4Fe in artificial extra-cellular fluids. Electrochim. Acta 49, 2113 2004

    Article  CAS  Google Scholar 

  18. G.L. Song, A.L. Bowles D.H. StJohn: Corrosion resistance of aged die cast magnesium alloy AZ91D. Mater. Sci. Eng., A 366, 74 2004

    Article  Google Scholar 

  19. Y.J. Zhang, C.W. Yan, F.H. Wang W.F. Li: Electrochemical behavior of anodized Mg alloy AZ91D in chuloride containing aqueous solution. Corros. Sci. 47, 2816 2005

    Article  CAS  Google Scholar 

  20. X.Y. Liu, R.K.Y. Fu, R.W.Y. Poon, P. Chen, P.K. Chu C.X. Ding: Biomimetic growth of apatite on hydrogen-implanted silicon. Biomaterials 25, 5575 2004

    Article  CAS  Google Scholar 

  21. Y.H. Shen, Z.L. Yang J.G. Wu: FTIR study on the precipitates of bovine serum albumin reacted with calcium hydroxyapatite. Acta Sci. Nat. Univ. Pekinensis 35, 431 1999

    CAS  Google Scholar 

  22. A. Klinger, D. Steinberg, D. Kohavi M.N. Sela: Mechanism of adsorption of human albumin to titanium in vitro. J. Biomed. Mater. Res. 36, 387 1997

    Article  CAS  Google Scholar 

  23. N. Hara, Y. Kobayashi, D. Kagaya N. Akao: Formation and breakdown of surface films on magnesium and its alloys in aqueous solutions. Corros. Sci. 49, 166 2007

    Article  CAS  Google Scholar 

  24. G. Song, A. Atrens, D. Sthohn Y. Li: The electrochemical corrosion of pure magnesium in 1 N NaCl. Corros. Sci. 39, 855 1997

    Article  CAS  Google Scholar 

  25. G. Ballerini, U. Bardi, R. Bignucolo G. Ceraolo: About some corrosion mechanisms of AZ91D magnesium alloy. Corros. Sci. 47, 2173 2005

    Article  CAS  Google Scholar 

  26. R.C. Zeng, W.Q. Zhou, E.H. Han K.E. Wei: Effect of pH values on as-extruded magnesium alloy AM60. Acta Metall. Sinca. 41, 307 2005

    CAS  Google Scholar 

  27. Y. Li, G.L. Song, H. Lin C.N. Cao: Study on the relationship between the corrosion interface structure and negative difference effect for pure magnesium. Corros. Sci. Protect. Technol. 11, 202 1999

    CAS  Google Scholar 

  28. C.N. Cao: An introduction to electrochemical impedance spectroscopy, Science editor, Beijing 2002 63–67

    Google Scholar 

  29. F. Contu, B. Elsener H. Honhni: Characterization of implant materials in fetal bovine serum and sodium sulfate by electrochemical impedance spectroscopy. I. Mechanically polished samples. J. Biomed. Mater. Res. 62, 412 2002

    Article  CAS  Google Scholar 

  30. G.L. Song, A. Aterens, S.L. Wu B. Zhang: Corrosion behavior of AZ21, AZ501 and AZ91 in sodium chloride. Corros. Sci. 40, 1769 1998

    Article  CAS  Google Scholar 

  31. R. McDonald, J.A. Pask D.W. Fuerstenau: Surface charge of alumina and magnesia in aqueous media. J. Am. Ceram. Soc. 47, 516 1964

    Article  Google Scholar 

  32. A. Krajewski, A. Piancastelli R. Malavolti: Albumin adhesion on ceramics and correlation with their Z-potential. Biomaterials 19, 637 1998

    Article  CAS  Google Scholar 

  33. S.A. Brown K. Merritt: Electrochemical corrosion in saline and serum. J. Biomed. Mater. Res. 14, 173 1980

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

The project was supported by City University of Hong Kong Applied Research Grant (ARG) No. 9667002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul K. Chu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, C., Xin, Y., Tian, X. et al. Degradation susceptibility of surgical magnesium alloy in artificial biological fluid containing albumin. Journal of Materials Research 22, 1806–1814 (2007). https://doi.org/10.1557/jmr.2007.0241

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2007.0241

Navigation