Skip to main content

Advertisement

Log in

Stress-life fatigue behavior and fracture-surface morphology of a Cu-based bulk-metallic glass

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The stress-life fatigue behavior and fracture morphology of a (Cu60Zr30Ti10)99Sn1 bulk-metallic glass alloy was investigated under both three-point and four-point bending conditions. For all stress levels tested, the fatigue lifetimes tended to be higher for the three-point loading condition. The fatigue endurance limits (defined as 107 cycles without failure), based on the applied stress range, for three-point and four-point loading conditions were approximately 475 MPa and 350 MPa, respectively. All fracture surfaces were found to be composed of four main regions: a crack-initiation site, a stable crack-growth region, an unstable fast-fracture region, and a melting region. Finely spaced parallel marks, similar to fatigue striations found in crystalline alloys, oriented somewhat perpendicular to the direction of crack propagation were observed in the stable crack-growth region. Analyses of these marks found that their spacing increased with increasing stress-intensity-factor range. Damage was found to initiate from preexisting defects present on or near the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.I. Salimon, M.F. Ashby, Y. Bréchet, and A.L. Greer: Bulk metallic glasses: What are they good for? Mater. Sci. Eng., A 375–377, 385 (2004).

    Article  Google Scholar 

  2. H.Q. Li, C. Fan, K.X. Tao, H. Choo, and P.K. Liaw: Compressive behavior of a Zr-based metallic glass at cryogenic temperatures. Adv. Mater. 18, 752 (2006).

    Article  CAS  Google Scholar 

  3. C. Fan, P.K. Liaw, V. Haas, J.J. Wall, H. Choo, A. Inoue, and C.T. Liu: Structures and mechanical behaviors of Zr55Cu35Al10 bulk amorphous alloys at ambient and cryogenic temperatures. Phys. Rev. B: Condens. Matter 74, 014205 (2006).

    Article  Google Scholar 

  4. H.Q. Li, K.X. Tao, C. Fan, P.K. Liaw, and H. Choo: Effect of temperature on mechanical behavior of Zr-based bulk metallic glasses. Appl. Phys. Lett. 89, 041921 (2006).

    Article  Google Scholar 

  5. W.H. Jiang, F. Liu, D.C. Qiao, H. Choo, and P.K. Liaw: Plastic flow in dynamic compression of a Zr-based bulk metallic glass. J. Mater. Res. 21, 1570 (2006).

    Article  CAS  Google Scholar 

  6. R. Hertzberg: Deformation and Fracture Mechanics of Engineering Materials 4th ed. (Wiley, Hoboken, NJ, 1996).

    Google Scholar 

  7. C.J. Gilbert, J.M. Lippman, and R.O. Ritchie: Fatigue of a Zr-Ti-Cu-Ni-Be bulk amorphous metal: stress/life and crack-growth behavior. Scripta Mater. 38, 537 (1998).

    Article  CAS  Google Scholar 

  8. C.J. Gilbert, V. Schroeder, and R.O. Ritchie: Mechanisms for fracture and fatigue- crack propagation in a bulk metallic glass. Metall. Mater. Trans., A 30, 1739 (1999).

    Article  Google Scholar 

  9. K.M. Flores, W.L. Johnson, and R.H. Dauskardt: Fracture and fatigue behavior of a Zr–Ti–Nb ductile phase reinforced bulk metallic glass matrix composite. Scripta Mater. 49, 1181 (2003).

    Article  CAS  Google Scholar 

  10. K.M. Flores and R.H. Dauskardt: Fracture and deformation of bulk metallic glasses and their composites. Intermetallics 12, 1025 (2004).

    Article  CAS  Google Scholar 

  11. G.Y. Wang, P.K. Liaw, W.H. Peter, B. Yang, Y. Yokoyama, M.L. Benson, M.J. Kirkham, S.A. White, R.L. McDaniels, T.A. Saleh, R.V. Steward, R.A. Buchanan, C.T. Liu, and C.R. Brooks: Fatigue behavior of bulk-metallic glasses. Inermetallics 12, 885 (2004).

    Article  CAS  Google Scholar 

  12. G.Y. Wang, P.K. Liaw, W.H. Peter, B. Yang, M. Freels, Y. Yokoyama, M.L. Benson, B.A. Green, T.A. Saleh, R.L. McDaniels, R.V. Steward, R.A. Buchanan, C.T. Liu, and C.R. Brooks: Fatigue behavior and fracture morphology of Zr50Al10Cu40 and Zr50Al10Cu30Ni10 bulk-metallic glasses. Intermetallics 12, 1219 (2004).

    Article  CAS  Google Scholar 

  13. G.Y. Wang, P.K. Liaw, A. Peker, B. Yang, W. Yuan, W.H. Peter, L. Huang, M. Freels, R.A. Buchanan, C.T. Liu, and C.R. Brooks: Fatigue behavior of Zr–Ti–Ni–Cu–Be bulk-metallic glasses. Intermetallics 13, 429 (2005).

    Article  CAS  Google Scholar 

  14. G.Y. Wang, P.K. Liaw, A. Peker, M. Freels, W.H. Peter, R.A. Buchanan, and C.R. Brooks: Comparison of fatigue behavior of a bulk metallic glass and its composite. Intermetallics 14, 1091 (2006).

    Article  CAS  Google Scholar 

  15. W.H. Peter, P.K. Liaw, R.A. Buchanan, C.T. Liu, C.R. Brooks, J.A. Horton Jr., C.A. Carmichael Jr., and J.L. Wright: Fatigue behavior of Zr52.5Al10Ti5Cu17.9Ni14.6 bulk metallic glass. Intermetallics 10, 1125 (2002).

    Article  CAS  Google Scholar 

  16. W.H. Peter, R.A. Buchanan, C.T. Liu, and P.K. Liaw: The fatigue behavior of a zirconium-based bulk metallic glass in vacuum and air. J. Non-Cryst. Solids 317, 187 (2003).

    Article  CAS  Google Scholar 

  17. Y. Yokoyama, K. Fukaura, and H. Sunada: Fatigue properties and microstructures of Zr55Cu30Al10Ni5 bulk glassy alloys. Mater. Trans., JIM 41, 675 (2000).

    Article  CAS  Google Scholar 

  18. Z.F. Zhang, J. Eckert, and L. Schultz: Tensile and fatigue fracture mechanisms of a Zr-based bulk metallic glass. J. Mater. Res. 18, 456 (2003).

    Article  CAS  Google Scholar 

  19. Z.F. Zhang, J. Eckert, and L. Schultz: Fatigue and fracture behavior of bulk metallic glass. Metall. Mater. Trans. A 35A, 3489 (2004).

    Article  CAS  Google Scholar 

  20. K.K. Camaron and R.H. Dauskardt: Fatigue damage in bulk metallic glass I: Simulation. Scripta Mater. 54, 349 (2006).

    Article  Google Scholar 

  21. P.A. Hess, B.C. Menzel, and R.H. Dauskardt: Fatigue damage in bulk metallic glass II: Experiments. Scripta Mater. 54, 355 (2006).

    Article  CAS  Google Scholar 

  22. B.C. Menzel and R.H. Dauskardt: Stress-life fatigue behavior of a Zr-based bulk metallic glass. Acta Mater. 54, 935 (2006).

    Article  CAS  Google Scholar 

  23. H. Zhang, Z.G. Wang, K.Q. Qiu, Q.S. Zang, and H.F. Zhang: Cyclic deformation and fatigue-crack propagation of a Zr-based bulk amorphous metal. Mater. Sci. Eng. A 356, 173 (2003).

    Article  Google Scholar 

  24. D.C. Qiao, P.K. Liaw, C. Fan, Y.H. Lin, G.Y. Wang, H. Choo, and R.A. Buchanan: Fatigue and fracture behavior of (Zr58Ni13.6Cu18Al10.4)99Nb1 bulk-amorphous alloy. Inermetallics 14, 1043 (2006).

    Article  CAS  Google Scholar 

  25. Q.S. Zhang, H.F. Zhang, Y.F. Deng, B.Z. Ding, and Z.Q. Hu: Cyclic softening of Zr55Al10Ni5Cu30 bulk amorphous alloy. Scripta Mater. 49, 273 (2003).

    Article  CAS  Google Scholar 

  26. A. Inoue: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000).

    Article  CAS  Google Scholar 

  27. F.I. Baratta: Requirements for flexure testing of brittle materials. ASTM STP. 844, 194 (1984).

    Google Scholar 

  28. ASM International Handbook Vol. 11 edited by D.W. Richardson, (ASM, Metals Park, OH, 1990) pp. 746–747.

    Google Scholar 

  29. J.C. Newman and I.S. Raju: NASA Technical Memorandum, 85793, 1984.

    Google Scholar 

  30. R.C. Bates and W.G. Clark Jr.: Fractography and fracture mechanics. Transactions of the ASM 62, 380 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Liaw.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freels, M., Liaw, P.K., Wang, G.Y. et al. Stress-life fatigue behavior and fracture-surface morphology of a Cu-based bulk-metallic glass. Journal of Materials Research 22, 374–381 (2007). https://doi.org/10.1557/jmr.2007.0052

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2007.0052

Navigation