Skip to main content
Log in

HTCVD growth of semi-insulating 4H-SiC crystals with low defect density

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The development of a novel SiC crystal growth technique, generically described as High Temperature Chemical Vapor Deposition (HTCVD) is reviewed. The structural, optical and electrical properties of 4H-SiC semi-insulating substrates are investigated with the aim of providing optimal microwave device performances. In particular, alternative compensation mechanisms to vanadium doping in S.I substrates are investigated to eliminate substrate induced trapping effects. Carried out at temperatures above 2100°C, the HTCVD technique uses, as in CVD, gas precursors (silane and a hydrocarbon) as source materials. The growth process can be described as “Gas Fed Sublimation” and proceeds by the gas phase nucleation of Six-Cy clusters, followed by their sublimation into active species that are condensed on a seed. Crystals with diameters up to 45 mm have been obtained with growth rates of 0.6 mm/h. The use of specific process steps, such as in-situ seed surface preparation and micropipe closing are presented and high resistivity wafers with micropipe densities down to 10 cm−2 are demonstrated. 4H-SiC substrates prepared from undoped crystals (with vanadium concentration lower than 5×1014 cm−3) exhibit semi-insulating behavior with a room temperature resistivity of the order of 1010Ωcm. Infrared absorption measurements show that two types of semi-insulating crystals can be grown, with a spectrum either dominated by the Si-vacancy, or by a previously unreported defect labeled UD-1. These two types of semi-insulating wafers are also differentiated by the temperature dependence of their resistivity, with activation energies of 0.85 and 1.4±0.1 eV, respectively, and by the stability of their resistivity upon an annealing at 1600°C. Initial MESFET devices processed on HTCVD grown substrates show better DC characteristics than devices processed on vanadium doped substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Kordina, C. Hallin, A. Ellison, A.S. Bakin, I.G. Ivanov, A. Henry, R. Yakimova, M. Tuominen, A. Vehanen and E. Janzén, Appl. Phys. Lett., 69(10) 1456 (1996).

    Article  CAS  Google Scholar 

  2. A. Ellison, J. Zhang, J. Peterson, A. Henry, Q. Wahab, J. P. Bergman, Y. N. Makarov, A. Vorob’ev, A. Vehanen and E. Janzén, Mat. Sci. Eng. B 61–62, 113 (1999).

    Article  Google Scholar 

  3. PhD thesis, Diss. No. 510, A. Ellison, Linköping University, Linköping, Sweden (1999).

    Google Scholar 

  4. A.N. Vorob’ev, S.Yu. Karpov, A.I. Zhmakin, A.A. Lovtsus, Yu. N. Makarov and A. Krishnan, J. of Cryst. Growth 211, 343 (2000).

    Article  Google Scholar 

  5. M. D. Allendorf and R.J. Klee, J. Electrochemical Soc. 138(3), 841 (1991).

    Article  CAS  Google Scholar 

  6. Yu. M. Tairov and V.F. Tsvetkov, J. of Cryst. Growth 52, 146 (1981).

    Article  CAS  Google Scholar 

  7. R. C. Glass, D. Henshall, V. F. Tsvetkov and C. H. Carter Jr, phys. stat. sol. (b) 202, 149 (1997)

    Article  CAS  Google Scholar 

  8. G. Augustine, D. McD. Hobgood, V. Balakrishna, G. Dunne and R. H. Hopkins, phys. stat. sol. (b) 202, 137 (1997)

    Article  CAS  Google Scholar 

  9. R. Yakimova, M. Tuominen, A. S. Bakin, J.O. Fornell, A. Vehanen and E. Janzén, Inst. Phys. Conf. Ser. 142, 101 (1996)

    CAS  Google Scholar 

  10. D. Hofmann, M. Müller, Mat. Sc. and Eng. B 61–62, 29 (1999)

    Article  Google Scholar 

  11. I. Kamata, H. Tsuchida, T. Jikomoto and K. Izumi, Jpn. J. Appl. Phys. 39, 6496 (2000)

    Article  CAS  Google Scholar 

  12. V. Balakrishna, G. Augustine and R. H. Hopkins, Mat. Res. Soc. Symp. 572, 245 (1999)

    Article  CAS  Google Scholar 

  13. O. Noblanc, C. Arnodo, C. Dua, E. Chartier and C. Brylinksi, Mat. Sc. and Eng. B 61–62, 339 (1999)

    Article  Google Scholar 

  14. O. Noblanc, C. Arnodo, C. Dua, E. Chartier and C. Brylinski, Materials Science Forum 338–342, 1247 (2000)

    Article  Google Scholar 

  15. M. Arai, H. Honda, M. Ogata, H. Sawazaki, A. Nakagawa and M. Kitamura, Ext. Abstracts 1stInt. Workshop on Ultra-Low-Loss Power Device Technology, 91 (2000)

  16. S. C. Binari, W. Kruppa, H. B. Dietrich, G. Kelner, A. E. Wickenden and J. A. Freitas, Jr., Solid-State Electron. 41, 1549 (1997)

    Article  CAS  Google Scholar 

  17. M. A. Khan, N. S. Shur, Q. C. Chen and J. N. Kuznia, Electron. Lett. 30, 2175 (1994)

    Article  CAS  Google Scholar 

  18. T. M. Barton and C. M. Snowden, IEEE Trans. Electron. Dev. 37, 1409 (1990)

    Article  Google Scholar 

  19. K. Horio and Y. Fuseya, IEEE Electron Dev. 41, 1340 (1994)

    Article  CAS  Google Scholar 

  20. K. Horio, A. Wakabayashi and T. Yamada, IEEE Trans. Electron. Dev. 47, 617 (2000)

    Article  CAS  Google Scholar 

  21. E. Sörman, N. T. Son, W. M. Chen, O. Kordina, C. Hallin and E. Janzén, Phys. Rev. B 61, 2613 (2000)

    Article  Google Scholar 

  22. B. Magnusson, A. Ellison, N.T. Son and E. Janzén, these proc.

  23. H. Itoh, N. Hayakawa, I. Nashiyama and E. Sakuma, J. Appl. Phys., 66(9) 4529 (1989)

    Article  CAS  Google Scholar 

  24. U. Forsberg, M. K. Linnarsson, A. Henry and E. Janzén, these proc.

  25. O. Noblanc, E. Morvan, C. Dua and C. Brylinski, proc. of the ECSCRM 2000 conference, in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellison, A., Magnusson, B., Hemmingsson, C. et al. HTCVD growth of semi-insulating 4H-SiC crystals with low defect density. MRS Online Proceedings Library 640, 12 (2000). https://doi.org/10.1557/PROC-640-H1.2

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-640-H1.2

Navigation