Skip to main content
Log in

Suppression of Stiction in MEMS

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Stiction failures in microelectromechanical systems (MEMS) occur when suspended elastic members are unexpectedly pinned to their substrates. This type of device failure develops both in fabrication and during device operation, being a dominant source of yield loss in MEMS. Stiction failures require first a collapse force that brings the elastic member contact with the substrate followed by an intersolid adhesion sufficiently large to overcome the elastic restoring force. Stiction failure mechanisms have been studied extensively elsewhere [1]. This paper briefly summarizes these mechanisms in a the practical way. Over the last decade, stiction failure rates in MEMS have been minimized using a wide variety of processing, surface treatment, and physical schemes. An update of these methods is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. H. Mastrangelo, “Adhesion related failure mechanisms in microelectromechanical systems,” Trib. Lett., vol. 3, pp. 223–238, 1997.

    CAS  Google Scholar 

  2. K. Chau, C. Fung, P. R. Harris, and G. Dahrooge, “A verstile polysilicon diaphragm pressure sensor chip,” in Int. Electron Devices Meeting, (IEDM 91), pp. 695–697, 1991.

    Google Scholar 

  3. D. W. Buurs, Micromechanics of Integrated Sensors and the Planar Processed Pressure Transducer. PhD thesis, University of Winsconsin, Madison, 1988.

    Google Scholar 

  4. J. M. Lysko, E. Stolarski, and R. S. Jachowicz, “Capacitive silicon pressure sensor based on the one-side wafer processing,” in Transducers’ 91, pp. 685–688, 1991.

    Google Scholar 

  5. J. T. Kung and H.-S. Lee, “An integrated air-gap capacitor process for sensor applications,” in Transducers’91, pp. 312–314, 1991.

    Google Scholar 

  6. W. Yun, R. T. Howe, and P. R. Gray, “Surface micromachined, digitally force-balanced accelerometer with integrated CMOS detection circuitry,” in International Workshop on Solid-State Sensors and Actuators (Hilton Head’ 92), pp. 126–131, 1992.

    Google Scholar 

  7. L. Ristic, R. Gutteridge, B. Dunn, D. Mietus, and P. Bennett, “Surface micromachined polysilicon accelerometer,” in International Workshop on Solid-State Sensors and Actuators (Hilton Head’ 92), pp. 118–121, 1992.

    Google Scholar 

  8. H. C. Nathanson and J. Guldberg, “Topologically structured thin films in semiconductor device operation,” Physics of Thin Films, vol. 8, pp. 251–298, 1975.

    CAS  Google Scholar 

  9. H. Guckel and D. W. Burns, “Fabrication of micromechanical devices from polysilicon films with smooth surfaces,” Sensors and Actuators, vol. 20, pp. 117–122, 1989.

    CAS  Google Scholar 

  10. J. N. Israelachvili, Intermolecular and Surface Forces. New York: Academic Press, 1985.

    Google Scholar 

  11. M. P. d. Boer, P. J. Clews, B. K. Smith, and T. A. Michalske, “Adhesion of polysilicon microbeams in controlled humidity ambients,” in Mat. Res. Soc. Symp. Proc., vol. 518, pp. 131–136, 1995.

    Google Scholar 

  12. C. H. Mastrangelo and C. H. Hsu, “Mechanical stability and adhesion of microstructures under capillary forces- parts I and II,” Journal of Microelectromechanical Systems, vol. 2, pp. 33–55, 1993.

    CAS  Google Scholar 

  13. C. H. Mastrangelo and C. H. Hsu, “A simple experimental technique for the measurement of the work of adhesion of microstructures,” in International Workshop on Solid-State Sensors and Actuators (Hilton Head’ 92), pp. 208–212, 1992.

    Google Scholar 

  14. E. W. Flosdorf, Freeze Drying: Drying by Sublimation. Ann Arbor, MI: University Microfilms International, 1982.

    Google Scholar 

  15. R. O. Holler, Freeze-Drying Biological Specimens. Washington, DC: Smithsonian Institution Press, 1979.

    Google Scholar 

  16. J. D. Mellor, Fundamentals of Freeze Drying. New York: Academic Press, 1978.

    Google Scholar 

  17. N. Takeshima, K. J. Gabriel, M. Ozaki, J. Takashashi, H. Horiguchi, and H. Fujita, “Electrostatic parallelogram actuators,” in Transducers’ 91, pp. 63–66, 1991.

    Google Scholar 

  18. G. T. Mulhern, D. Soane, and R. Howe T, “Supercritical carbon dioxide drying for microstmctures,” in Transducers’ 93, pp. 296–299, 1993.

    Google Scholar 

  19. C. J. Dawes, Introduction to Biological Electron Microscopy: Theory and Techniques. Burlington, VT: Ladd Research Industries, 1988.

    Google Scholar 

  20. H. Watanabe, S. Ohnishi, I. Honma, H. Kitajima, H. Ono, R. WIlhelm, and A. Sophie, “Selective etching of phosphosilicate glass with low pressure vapor hf,” J. Electrochem. Soc., vol. 142, pp. 237–243, 1995.

    CAS  Google Scholar 

  21. M. Wong, M. Moslehi, and R. Bowling, “Wafer temperature dependence of the vapor-phase hf oxide etch,” J. Electrochem. Soc., vol. 140, pp. 205–208, 1993.

    CAS  Google Scholar 

  22. J. Ruzillo, K. Torek, C. Daffron, R. Grant, and R. Novak, “Etching of thermal oxides in low pressure anhydrous HF/CHaOH gas mixture at elevated temperature,” J. Electrochem. Soc., vol. 140, pp. p. L64–L66, 1993.

    Google Scholar 

  23. T. Hirano, T. Furuhata, and H. Fujita, “Dry releasing of electroplated rotational and overhanging structures,” in International Conference on Micro Electromechanical Systems (MEMS 93), Fort Lauderdale, FL, U.S.A. Feb. 1993, pp. 278–283.

    Google Scholar 

  24. C. Mastrangelo and G. Saloka, “A dry-release method based on polymer columns for microstructure fabrication,” Proc. IEEE Micro Electro Mech. Syst. Workshop, Fort Lauderdale, FL, U.S.A. Feb. 1993, pp. 77–81.

    Google Scholar 

  25. M. Orpana and A. O. Korhonen, “Control of residual stress of polysilicon thin films by heavy doping in surface micromachining,” in Transducers’ 91, pp. 957–960, 1991.

    Google Scholar 

  26. F. Kozlowski, N. Lindmair, T. Scheiter, C. Hierold, and W. Lang, “A novel method to avoid sticking of surface micromachined structures,” Transducers’95, pp. 220–223, 1995.

    Google Scholar 

  27. H. V. Jansen, J. G. E. Gardeniers, J. Elders, H. A. C. Tilmans, and M. Elwenspoek, “Applications of fluorocarbon polymers in micromechanics and micromachining,” Sensors and Actuators, vol. A41–42, pp. 136–140, 1994.

    Google Scholar 

  28. T. Abe, W. C. Messner, and M. Reed, “Effective methods to prevent stiction during post-release-etch processing,” Proc. IEEE Micro Electro Mech. Syst. Workshop, Amsterdam, Neth, Feb. 1995, pp. 94–99.

    Google Scholar 

  29. G. Gould and E. A. Irene, “An in-situ study of aqueous HF treatment of silicon by contact angle measurement and ellipsometry,” J. Electrochem. Soc., vol. 135, pp. 1535–1539, 1988.

    CAS  Google Scholar 

  30. R. Williams and A. M. Goodman, “Wetting of thin layers of SiO2 by water,” Applied Physics Letters, vol. 25, pp. 531–532, 1974.

    CAS  Google Scholar 

  31. R. G. Frieser, “Characterization of thermally grown SiO2 surfaces by contact angle measurements,” J. Electrochem. Soc., vol. 121, pp. 669–672, 1974.

    CAS  Google Scholar 

  32. K. Hermansson, U. Lindberg, B. Hök, and G. Palmskog, “Wetting properties of silicon surfaces,” in Transducers’91, pp. 193–196, 1991.

    Google Scholar 

  33. D. Graf, M. Grunder, R. Schulz, and L. Muhlhoff, “Oxidation of hf-treated si wafer surfaces in air,” J. Applied Phys., vol. 68, pp. 5155–5161, 1990.

    Google Scholar 

  34. H. Watanabe, M. Hamano, and M. Harazono, “The role of atmospheric oxygen and water in the generation of water marks on the silicon surface in cleaning processes,” Mat. Sci. Eng., vol. B4, pp. 401–405, 1989.

    CAS  Google Scholar 

  35. M. Morita, T. Ohmi, E. Hagesawa, M. Kawakami, and K. Suma, “Control factor of native oxide growth on silicon in air or in ultrapure water,” Applied Physics Letters, vol. 55, pp. 562–564, 1989.

    CAS  Google Scholar 

  36. A. Ulman, An Introduction to Ultrathin Organic Films: From Langmuir-Blodgett to Self-Assembly. Boston: Academic Press, 1991.

    Google Scholar 

  37. R. Alley, R. T. Howe, and K. Komvopoulos, “The effect of release-etch processing on surface microstructure stiction,” in International Workshop on Solid-State Sensors and Actuators (Hilton Head’ 92), pp. 202–207, 1992.

    Google Scholar 

  38. M. Houston, R. Maboudian, and R. T. Howe, “Self-assembled monolayer films as durable anti-stiction coatings for polysilicon microstructures,” in International Workshop on Solid-State Sensors and Actuators (Hilton Head’ 96), pp. 42–47, 1996.

    Google Scholar 

  39. U. Srinivasan, M. R. Houston, R. T. Howe, and R. Maboudian, “Self-assembled fluorocarbon films for enhanced stiction reduction,” in Transducers’ 97, pp. 1399–1402, 1997.

    Google Scholar 

  40. B. P. Gogoi and C. H. Mastrangelo, “Adhesion release and yield enhancement of microstructures using pulsed lorentz forces,” Journal of Microelectromechanical Systems, vol. 4, pp. 185–192, 1995.

    Google Scholar 

  41. V. Kaajakari and A. Lal, “Pulsed ultrasonic release and assembly of micromachines,” in Transducers’ 99, pp. 212–215, 1999.

    Google Scholar 

  42. R. L. Alley, P. Mai, K. Komvopulos, and R. T. Howe, “Surface roughness modification of interfacial contacts in polysilicon microstructures,” in Transducers’ 93, pp. 288–291, 1993.

    Google Scholar 

  43. Y. Yee, K. Chun, and J. D. Lee, “Polysilicon surface modification technique to reduce sticking of microstructures,” in Transducers’ 95, pp. 206–209, 1995.

    Google Scholar 

  44. L.-S. Fan, Integrated Micromachinery–Moving Structures in Silicon Chips. PhD thesis, University of California, Berkeley, 1990.

    Google Scholar 

  45. W. C. Tang, T.-C. H. Nguyen, and R. T. Howe, “Laterally driven polysilicon resonant microstructures,” Proc. IEEE Micro Electro Mech. Syst. Workshop, Salt Lake City, Utah, U.S.A., Feb. 1989, pp. 53–59.

    Google Scholar 

  46. K. L. Johnson, K. Kendall, and A. D. Roberts, “Surface energy and the contact of elastic solids,” Proc. Royal Soc. London A, vol. 324, pp. 301–313, 1971.

    CAS  Google Scholar 

  47. K. L. Johnson, Contact Mechanics. New York: Cambridge University Press, 1987.

    Google Scholar 

  48. M. R. Houston, R. Maboudian, and R. T. Howe, “Ammonium fluoride anti-stiction treatments for polysilicon microstructures,” Transducers’95, pp. 210–213, 1995.

    Google Scholar 

  49. L. J. Hornbeck, “Digital light processing and MEMS: timely convergence for a bright future,” in Proc. SPIE Micromachining and Microfabrication Process Technology Conference, vol. SPIE 2639, pp. 1–21, 1995.

    Google Scholar 

  50. J. J. Licari, Plastic Coatings for Electronics. New York: McGraw-Hill, 1970.

    Google Scholar 

  51. H. Yasuda and T. Hsu, “Some aspects of plasma polymerization of fluorine containing organic compounds,” J. Polym. Sci. Polym Chem. Ed., vol. 15, pp. 2411–2424, 1977.

    CAS  Google Scholar 

  52. H. Yasuda and T. Hsu, “Some aspects of plasma polymerization of fluorine containing organic compounds. ii. comparison of ethylene and tetrafluoroethylene,” J. Polymer Sci., vol. 16, pp. 415–425, 1978.

    CAS  Google Scholar 

  53. H. Yasuda, Plasma Polymerization. New York: Academic Press, 1985.

    Google Scholar 

  54. P. D. Buzzard, Plasma Polymerization of Tetrafluoroethylene in a Field Free Zone. PhD thesis, University of California, Berkeley, 1978.

    Google Scholar 

  55. P. F. Man, B. P. Gogoi, and C. H. Mastrangelo, “Elimination of post-release adhesion in microstructures using thin conformal fluorocarbon films,” Proc. IEEE Micro Electro Mech. Syst. Workshop, San Diego, CA, U.S.A. Feb. 1996, pp. 55–60.

    Google Scholar 

  56. P. F. Man, B. P. Gogoi, and C. H. Mastrangelo, “Elimination of post-release adhesion in microstructures using conformal fluorocarbon films,” Journal of Microelectromechanical Systems, vol. 6, pp. 25–34, March 1997.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mastrangelo, C.H. Suppression of Stiction in MEMS. MRS Online Proceedings Library 605, 105–116 (1999). https://doi.org/10.1557/PROC-605-105

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-605-105

Navigation