Skip to main content
Log in

Generalized shear-lag model for load transfer in SiC/Al metal-matrix composites

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The load-transfer efficiency of reinforcement, in cylindrical forms in metal-matrix composite (MMC), was analyzed based on the shear-lag model. Both the geometric shape and alignment of reinforcement were considered. The stress transferred to a misaligned whisker was calculated from differential equations based on the force equilibrium in longitudinal and transverse directions. A new parameter, defined as effective aspect ratio, was used to indicate the load-transfer efficiency of misaligned reinforcement. The effective aspect ratio was formulated as a function of aspect ratio and misorientation angle of reinforcement in MMC. A probability density function of misorientation distribution was used to estimate the strengthening effect of all misaligned whiskers distributed in the matrix. Considering the contributions of both effective aspect ratio and misorientation distribution on load-transfer efficiency, a generalized shear-lag model was proposed to explain the mechanical anisotropy of discontinuous reinforced MMC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.J. Koczak, S.C. Kahtri, J.E. Allison, and J.W. Jones, Fundamentals of Metal Matrix Composites, edited by S. Suresh, A. Mortensen, and A. Needleman (Butterworth-Heinemann, Boston, MA, 1993), pp. 297–326.

  2. D.J. Lloyd, Inter. Mater. Rev. 39, 1 (1994).

    Article  CAS  Google Scholar 

  3. R.K. Everett and R.J. Arsenault, Metal Matrix Composites (Academic, San Diego, CA, 1991), p. 2.

  4. T. Christman, A. Needleman, S. Nutt, and S. Suresh, Mater. Sci. Eng. A 107, 49 (1989).

    Article  Google Scholar 

  5. S.H. Hong and K.H. Chung, Mater. Sci. Eng. A 194, 165 (1995).

    Article  Google Scholar 

  6. S.H. Hong, K.H. Chung, and C.H. Lee, Mater. Sci. Eng. A, 206, 225 (1996).

    Article  Google Scholar 

  7. A.B. Pandey, R.S. Mishra, and Y.R. Mahajan, Acta Metall. Mater. 40, 2045 (1992).

    Article  CAS  Google Scholar 

  8. T.L. Dragone and W.D. Nix, Acta Metall. Mater. 38, 1941 (1990).

    Article  Google Scholar 

  9. F.A. Mohamed, Metall. Mater. Trans. A 28A, 2780 (1997).

    Article  CAS  Google Scholar 

  10. Y. Li and T.G. Langdon, Acta Materialia 45, 4797 (1997).

    Article  CAS  Google Scholar 

  11. H.L. Cox, Br. J. Appl. Phys. 3, 73 (1952).

    Article  Google Scholar 

  12. H. Fukuda and T-W. Chou, J. Comp. Mater. 15, 79 (1981).

    Article  Google Scholar 

  13. T.W. Clyne, Mater. Sci. Eng. A 122, 183 (1989).

    Article  Google Scholar 

  14. V.C. Nardone and K.M. Prewo, Scripta Metall. Mater. 20, 43 (1986).

    Article  CAS  Google Scholar 

  15. V.C. Nardone, Scripta Metall. Mater. 21, 1313 (1987).

    Article  CAS  Google Scholar 

  16. M.R. Piggot, Load Bearing Fiber Composites (Pergamon Press, New York, 1980), p. 68.

  17. S.V. Nair and H.G. Kim, ASME Trans. J. Appl. Mech. 59, S176 (1992).

    Article  CAS  Google Scholar 

  18. Y. Wu and E J. Lavernia, Scripta Metall. Mater. 27, 173 (1992).

    Article  CAS  Google Scholar 

  19. H. Sekine and R. Chen, Composites 26, 183 (1995) .

    Article  CAS  Google Scholar 

  20. N.J. Sorensen, Acta Metall. Mater. 41, 2973 (1993).

    Article  Google Scholar 

  21. N. Shi, B. Wilner, and R.J. Arsenault, Acta Metall. Mater. 40, 2841 (1992).

    Article  CAS  Google Scholar 

  22. N.J. Sorensen, S. Suresh, V. Tvergaard, and A. Needleman, Mater. Sci. Eng. A 197, 1 (1995).

    Article  Google Scholar 

  23. C.T. Chon and C.T. Sun, J. Mater. Sci. 15, 931 (1980).

    Article  Google Scholar 

  24. C.T. Sun and J.K. Wu, J. Reinforced Plastics and Composites 3, 130 (1984).

    Article  Google Scholar 

  25. R.M. Christensen and F.M. Waals, J. Composite Materials 6, 518 (1972).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon H. Hong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryu, H.J., Cha, S.I. & Hong, S.H. Generalized shear-lag model for load transfer in SiC/Al metal-matrix composites. Journal of Materials Research 18, 2851–2858 (2003). https://doi.org/10.1557/JMR.2003.0398

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2003.0398

Navigation