Skip to main content
Log in

Collective cooling of atoms in a ring cavity

  • Published:
Acta Physica Hungarica B) Quantum Electronics

Abstract

We study the cooling effect induced by a transversely pumped ring cavity on the motion of N linearly polarizable particles, all of which are trapped in the same cavity. We derive the friction tensor including cross friction terms and compare it to the friction coefficient of single-atom cavity cooling. We find that atoms that are not trapped by the cavity field are cooled independently with the same efficiency as a single untrapped atom. For atoms self-trapped in the cavity field, however, collective effects kick in. These result in an N-fold increase of the friction on the center-of-mass mode, however, all other modes of motion are practically not cooled by the cavity. This shows that cavity cooling works efficiently for many particles cooled collectively, and allows us to reach the regime where the particles are deeply trapped in harmonic wells. There it has to be complemented by other cooling methods, e.g. sideband cooling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Horak, G. Hechenblaikner,K. Gheri, H. Stecher and H. Ritsch, Phys. Rev. Lett. 79 (1997) 4974; G. Hechenblaikner, M. Gangl, P. Horak and H. Ritsch, Phys. Rev. A 58 (1998) 3030.

    Article  ADS  Google Scholar 

  2. P. Maunz, T. Puppe, I. Schuster, N. Syassen, P.W.H. Pinkse and G. Rempe, Nature 428 (2004) 50.

    Article  ADS  Google Scholar 

  3. P. Domokos and H. Ritsch, Phys. Rev. Lett. 89 (2002) 253003.

    Article  ADS  Google Scholar 

  4. J.K. Asbóth, P. Domokos and H. Ritsch, Phys. Rev. A 70 (2004) 013414.

    Article  ADS  Google Scholar 

  5. A.T. Black, J.K. Thompson and V. Vuletic, J. Phys. B: At. Mol. Opt. Phys. 38 (2005) S605.

    Article  ADS  Google Scholar 

  6. D. Kruse and C. von Cube and C. Zimmermann and Ph.W. Courteille, Phys. Rev. Lett. 91 (2003) 183601.

    Article  ADS  Google Scholar 

  7. S. Slama, C. von Cube, B. Deh, A. Ludewig, C. Zimmermann and Ph.W. Courteille, Phys. Rev. Lett. 94 (2005) 193901.

    Article  ADS  Google Scholar 

  8. Th. Elsässer, B. Nagorny and A. Hemmerich, Phys. Rev. A 69 (2004) 033403.

    Article  ADS  Google Scholar 

  9. P. Domokos and H. Ritsch, J. Opt. Soc. Am. B 20 (2003) 1098.

    Article  ADS  Google Scholar 

  10. D. Nagy, J.K. Asbóth, P. Domokos and H. Ritsch, Europhys. Lett. 74 (2006) 254.

    Article  ADS  Google Scholar 

  11. P. Horak and H. Ritsch, Phys. Rev. A 64 (2001) 033422.

    Article  ADS  Google Scholar 

  12. M. Gangl and H. Ritsch, Phys. Rev. A 61 (2000) 011402.

    Article  ADS  Google Scholar 

  13. K. Murr, S. Nussmann, T. Puppe, M. Hijlkema, B. Weber, S.C. Webster, A. Kuhn and G. Rempe, Phys. Rev. A 73, (2006) 063415; K. Murr, Phys. Rev. Lett. 96 (2006) 253001.

    Article  ADS  Google Scholar 

  14. M. Gangl and H. Ritsch, Phys. Rev. A 61 (2000) 043405.

    Article  ADS  Google Scholar 

  15. S. Zippilli and G. Morigi, Phys. Rev. Lett 95 (2005) 143001; S. Zippilli and G. Morigi, Phys. Rev. A 72 (2005) 053408.

    Article  ADS  Google Scholar 

  16. A.D. Boozer, A. Boca, R. Miller, T.E. Northup and H.J. Kimble, Phys. Rev. Lett. 97 (2006) 083602.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dávid Nagy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagy, D., Asbóth, J.K. & Domokos, P. Collective cooling of atoms in a ring cavity. Acta Phys. Hung. B 26, 141–148 (2006). https://doi.org/10.1556/APH.26.2006.1-2.16

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1556/APH.26.2006.1-2.16

Keywords

PACS

Navigation