Skip to main content
Log in

Effects of dietary chromium and ascorbic acid supplementation on digestion of nutrients, serum antioxidant status, and mineral concentrations in laying hens reared at a low ambient temperature

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

This experiment was conducted to evaluate the effects of chromium (chromium picolinate, CrPic) and vitamin C (l-ascorbic acid) supplementation on the digestion of nutrients and serum concentration of some antioxidant vitamins and minerals of laying hens (Hy-Line) reared at a low ambient temperature (6.8°C). One hundred twenty laying hens (32 wk old) were divided into 4 groups, 30 hens per group. The laying hens were fed either a basal diet or the basal diet supplemented with either 400 µg of Cr/kg diet, 250 mg of l-ascorbic acid/kg diet, or 400 µg of Cr plus 250 mg l-ascorbic acid/kg diet. The digestibility of nutrients (DM, OM, CP, and EE) increased by the supplementation of chromium and vitamin C (p<0.05). Supplemental chromium and vitamin C also increased serum vitamin C and E but decreased malondialdehyde concentrations (p<0.05). Additionally, supplemental chromium and vitamin C caused an increase in the serum concentrations of Fe, Zn, Mn, and Cr (p<0.05) but a decrease in Cu concentration. The results of the present study showed that each dietary supplement influenced most of the parameters measured in a similar way. Also, a combination of the two supplements resulted in an additive effect, and supplementing a combination of vitamin C (250 mg/kg of diet) and chromium (400 µg Cr/kg diet) may offer a potential protective management practice in preventing cold-stress-related depression in the performance of laying hens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. M. Sagher, The effect of cold stress on muscle growth in young chicks, Growth 39, 281–285 (1975).

    PubMed  CAS  Google Scholar 

  2. Z. Arad and J. Marder, Comparison of the productive performances of the sinai bedouin fowl, the white leghorn and their crossbreeds: study under natural desert conditions. British Poult. Sci. 23, 33–38 (1982).

    Google Scholar 

  3. M. E. Ensminger, J. E. Oldfield, and W. Heinemann, Feeds and Nutrition, Ensminger Publishing, CA, pp. 108–110 (1990).

    Google Scholar 

  4. M. Sari, Çevrenin Evcil Hayvanlarda Besin Maddesi ihtiyaçlari Üzerine Etkileri, Yüksek Lisans Ders Notlari, Elazig, Turkey (1993).

    Google Scholar 

  5. M. Spinu and A. A. Degen, Effect of cold stress on performance and immune responses of bedouin and white leghorn hens. British Poult. Sci. 34, 177–181 (1993).

    CAS  Google Scholar 

  6. P. Datta, and P. C. Gangwar, Effect of environmental cooling on certain biochemical responses in broilers, Acta Physiol. Pharm. Bulg. 7, 34–36 (1981).

    CAS  Google Scholar 

  7. R. A. Anderson, Chromium, in Trace Elements in Human and Animal Nutrition, Academic, New York, pp. 225–244 (1987).

    Google Scholar 

  8. L. R. McDowell, Vitamins in animal nutrition, in Comparative Aspects to Human Nutrition, Vitamin E. L. R. Mc Dowell, ed., Academic, London, pp. 93–131 (1989).

    Google Scholar 

  9. R. A. Anderson, Stress effects on chromium nutrition of humans and farm animals, in Biotechnology in Feed Industry, T. P. Lyons and K. A. Jacques, eds., University Press, Nothingam, pp. 267–274 (1994).

    Google Scholar 

  10. H. S. Siegel, Stress, strains and resistance, British Poult. Sci. 36, 3–20 (1995).

    CAS  Google Scholar 

  11. M. O. Smith and R. G. Teeter, Potassium balance of the 5 to 8-week old broiler exposed to constant heat or cycling high temperature stress and the effects of supplemental potassium chloride on body weight gain and feed efficiency, Poult. Sci. 66, 487–492 (1987).

    PubMed  CAS  Google Scholar 

  12. K. Sahin, N. Sahin, and S. Yaralioglu, Effects of vitamin C and vitamin E on lipid peroxidation, blood serum metabolites and mineral concentrations of laying hens reared at high ambient temperature, Biol. Trace Element Res. (2001), in press.

  13. N. Sahin, M. Onderci, and K. Sahin, Effects of dietary chromium and zinc on egg production, egg quality and some blood metaboites of laying hens reared under low ambient temperature, Biol. Trace Element Res. (2001), in press.

  14. K. Sahin, O. Kucuk, N. Sahin, and O. Ozbey, Effects of dietary chromium picolinate supplementation on egg production, egg quality, and serum concentrations of insulin, corticostrerone and some metabolites of Japanese quails, Nutr. Res. 21, 1315–1321 (2001).

    Article  CAS  Google Scholar 

  15. D. D. Gallaher, A. S. Csallany, D. W. Shoeman, and J. M. Olson, Diabetes increases excretion of urinary malondehyde cojugates in rats, Lipids 28, 663–666 (1993).

    Article  PubMed  CAS  Google Scholar 

  16. H. G. Preuss P. L. Grojec, S. Lieberman, and R. A. Anderson, Effects of different chromium compounds on blood pressure and lipid peroxidation in spontaneously hypertensive rats, Clin. Nephrol. 47(5), 325–330 (1997).

    PubMed  CAS  Google Scholar 

  17. S. Okado, H. Tsukada, and H. Ohba, Enhancement of nucleolar RNA synthesis by chromium (III) in regenerating rat liver. J. Inorg. Biochem. 21, 113–116 (1984).

    Article  Google Scholar 

  18. M. C. Linder, Nutrition and metabolism of the trace elements, in Nutritional Biochemistry and Metabolism with Clinical Applications, M. C. Linder, ed., Elsevier, New York, pp. 215–276 (1991).

    Google Scholar 

  19. R. J. Doisy, Effect of nutrient deficiencies in animals; chromium, in CRC Handbook Series in Nutrition and Food. Section E: Nutritional Disorders, Vol. 2 Effect of Nutrient Deficiencies in Animals, M. Rechcigi, Jr., ed., CRC, West Palm Beach, FL, pp. 341–342 (1978).

    Google Scholar 

  20. J. D. Pagan, S. G. Jackson, and S. E. Duren, The effect of chromium supplementation on metabolic response to exercise in thoroughbred horses, in Biotechnology in the Feed Industry: Proceedings of Alltech’s Eleventh Annual Symposium, T. P. Lyons and K. A. Jacques, eds., Nottingham University Press, Nottingham, pp. 249–256 (1995).

    Google Scholar 

  21. D. N. Mowat, Organic chromium. A new nutrient for stressed animals, in Biotechnology in the Feed Industry: Proceedings of Alltech’s Tenth Annual Symposium, T. P. Lyons and K. A. Jacques, eds., Nottingham University Press, Nottingham, pp. 275–282 (1994).

    Google Scholar 

  22. A. H. Sykes, Vitamin C for poultry; some recent research, Roche Symposium, pp. 5–15 (1978).

  23. S. L. Pardue and J. P. Thaxton, Ascorbic acid in poultry. A review, World’s Poult. Sci. 42, 107 (1986).

    Article  Google Scholar 

  24. P. A. Thornton, The effect of environmental temperature on body temperature and oxygen uptake by the chicken, Poult. Sci. 41, 1053 (1962).

    Google Scholar 

  25. B. S. Bains, The role of vitamin C in stress management. Missset Word Poult. 12(4), 38 (1996).

    Google Scholar 

  26. NRC, The Role of Chromium in Animal Nutrition, National Academy Press, Washington, DC (1997).

    Google Scholar 

  27. K. Sahin, O. Kucuk, and N. Sahin, Effects of dietary chromium picolinate supplementation on performance, insulin and corticostrerone in laying hens under low ambient temperature, J. Anim. Physiol. Anim. Nutr. 85, 142–147 (2001).

    Article  CAS  Google Scholar 

  28. M. A. Cupo and W. E. Donaldson, Chromium and vanadium effects on glucose metabolism and lipid synthesis in the chick, Poult. Sci. 66, 120–126 (1987).

    PubMed  CAS  Google Scholar 

  29. T. F. Lien, Y. M. Horng, and K. H. Yang. Performance, serum characteristics, carcass traits and lipid metabolism of broilers as affected by supplement of chromium picolinate, British Poult. Sci. 40(3), 357–361 (1999).

    Article  CAS  Google Scholar 

  30. NRC, Nutrient Requirements of Poultry, 9th rev. ed., National Academy Press, Washington, DC (1994).

    Google Scholar 

  31. H. Petry and W. Rapp, Zur problematik der chromoxidebestimmung in verdauungsversuchen, Z. Tierphysiol. Tierernaehr. 27, 181–189 (1971).

    CAS  Google Scholar 

  32. AOAC, Official Methods of Analysis, Association of Agricultural Chemists, Washington, DC (1990).

    Google Scholar 

  33. K. Terpstra and N. De Hart. The estimation of urinary nitrogen and fecal nitrogen in poultry excreta, Z. Tierphysiol. Tierernaehr. Futtemittlkd. 32, 306–311 (1974).

    CAS  Google Scholar 

  34. Z. A. Placer, L. L. Cushmann, and B. C. Johnson, Estimation of products of lipid peroxidation in biochemical systems, Anal. Biochem. 16, 359–364 (1966).

    Article  PubMed  CAS  Google Scholar 

  35. B. Matkovics, I. Szabo, and I. S. Varga, Determination of enzyme activities in lipid peroxidation and glutathione pathways, Lab. Diagn. 15, 248–249 (1989).

    Google Scholar 

  36. C. H. McMurry, W. J. Blanchflower, and D. A. Rice, Influence of extraction techniques on the determination of α-tocopherol in animal feedstuffs, J. Assoc. Off. Anal. Chem. 63, 1258–1261 (1980).

    Google Scholar 

  37. A. Kyaw, Simple calorimetric methods for ascorbic acid determination in blood plasma, Clin. Chem. Acta 86, 153–160 (1978).

    Article  CAS  Google Scholar 

  38. SAS Institute, SAS® User’s Guide: Statistics. SAS Institute, Cary, NC (1989).

    Google Scholar 

  39. K. Sahin, Effects of supplemental dietary chromium on yield and nutrient digestibility of laying hens under low temperature, Turkish J. Vet. Anim. Sci. 25, 823–831 (2001).

    Google Scholar 

  40. K. Sahin and O. Küçük, Effects of vitamin C and vitamin E on performance, digestion of nutrients and carcass characteristics of Japanese quails reared under heat stress (34°C), J. Anim. Physiol. Anim. Nutr. 85, 335–341 (2001).

    Article  CAS  Google Scholar 

  41. E. T. Kornegay, Z. Wang, C. M. Wood, and M. D. Lindeman, Supplemental chromium picolinate influences nitrogen balance, dry matter digestibility, and carcass traits in growing-finishing pigs. J. Anim. Sci. 75, 1319–1323 (1997).

    PubMed  CAS  Google Scholar 

  42. B. Halliwell and J. M. C. Gutteridge, Free Radicals in Biology and Medicine, 2nd ed., Oxford University Press, New York (1989).

    Google Scholar 

  43. M. Naziroglu, et al., The effect of food withdrawal and darkening on lipid peroxidation of laying hens in high ambient temperatures, Dtsch. Tierarztl. Wschr. 107, 199–202 (2000).

    CAS  Google Scholar 

  44. K. C. Klasing, Comparative Avian Nutrition, Cambridge University Press, Cambridge, pp. 277–299 (1998).

    Google Scholar 

  45. R. Feenster, High temperatures decrease vitamin utilization, Misset Poult. Sci. 38, 38–41 (1985).

    Google Scholar 

  46. S. L. Pardue and J. P. Thaxton, Evidence of amelioration of steroid mediated immunosuppression by ascorbic acid, Poult. Sci. 63, 1262 (1984).

    PubMed  CAS  Google Scholar 

  47. M. F. Abdel-Wahap, M. S. Abdo, Y. M. Megahed, M. E. Attia, and A. A. Farahat, The effect of vitamin C supplement on the thyroid activity of chickens using 125I. Zbl. Vet. Med. A 22, 769–775 (1975).

    Google Scholar 

  48. H. R. Kutlu and J. M. Forbes, Changes in growth and blood parameters in heat-stressed broiler chicks in response to dietary ascorbic acid. Livestock Product. Sci. 36, 335–350 (1993).

    Article  Google Scholar 

  49. J. S. McKee, P. C. Harrison, and G. L. Riskowski, Effect of supplemental ascorbic acid on the energy conversion of broiler chicks during heat stress and feed withdrawal, Poult. Sci. 76, 1278–1286 (1997).

    PubMed  CAS  Google Scholar 

  50. B. Frei, R. Stocker, L. England, and B. N. Ames, Ascorbate: the most effective anti-oxidant in human plasma, inAntioxidants in Therapy and Preventive Medicine, I. Emerit, L. Packer, and C. Auclair, eds., Plenum, New York, pp. 155–164 (1991).

    Google Scholar 

  51. D. C. Gallo-Torres, Absorption, blood transport and metabolism of vitamin E, in A Comprehensive Treatise, L. J. Machlin, ed., Marcel Dekker, New York, pp. 170–267 (1980).

    Google Scholar 

  52. J. S. Borel, T. C. Majerus, M. Polansky, P. B. Moser, and R. A. Anderson, Chromium intake and urinary chromium excretion of trauma patients, Biol. Trace Element Res. 6, 317–321 (1984).

    Article  Google Scholar 

  53. M. Colgan, Chromium boosts insulin efficiency, in Optimum Sports Nutrition, Advanced Research, New York, pp. 313–320 (1993).

    Google Scholar 

  54. J. B. Vincent, The biochemistry of chromium, J. Nutr. 130, 715–718 (2000).

    PubMed  CAS  Google Scholar 

  55. J. B. Vincent, The bioinorganic chemistry of chromium (III). Polyhedron 20(1–2), 1–26 (2001).

    Article  CAS  Google Scholar 

  56. W. R. Beisel, Single nutrients and immunity, Am. J. Clin. Nutr. 35, 442–451 (1982).

    Google Scholar 

  57. E. J. Butler and M. J. Curtis, The effect of Escherichia coli endotoxin and ACTH on the plasma zinc concentration of the domestic fowl, Res. Vet. Sci. 15, 367–369 (1973).

    Google Scholar 

  58. L. S. Tufft and C. F. Nockles, The effects of stress, Escherichia coli, dietary ethylenediamintetraacetic acid, and their interaction on tissue trace elements in chicks, Poult. Sci. 70, 2439–2449 (1991).

    PubMed  CAS  Google Scholar 

  59. O. El Husseiny and C. R. Creger. Effect of ambient temperature on mineral retention and balance of the broiler chicks. Poult Sci. 60(Suppl. 1) 1651 (1981) (abstract).

    Google Scholar 

  60. D. S. Carol, N. Cheng, B. Adeleye, F. Owens, and B. J. Stoecker, Chromium and chronic ascorbic acid depletion effects on tissue ascorbate, manganese, and 14C retention from 14C-ascorbate in guine pigs. Biol. Trace Element Res. 41, 279 (1994).

    Google Scholar 

  61. G. V. Mann and P. Newton, The membrane transport of ascorbic acid (El transporte de ácido ascórbico a las membranas celulares), Second Conference on Vitamin C., Annals of the New York Academy of Sciences, New York, pp. 243–252 (1975).

    Google Scholar 

  62. C. D. Seaborn, N. Cheng, B. Adeleye, F. Owens, and B. J. Stoecker, Chromium and chronic ascorbic acid depletion effects on tissue ascorbate, manganese, and 14C retention from 14C-ascrobate in guinea pigs, Biol. Trace Element Res. 41, 279–285 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahin, K., Sahin, N. & Kucuk, O. Effects of dietary chromium and ascorbic acid supplementation on digestion of nutrients, serum antioxidant status, and mineral concentrations in laying hens reared at a low ambient temperature. Biol Trace Elem Res 87, 113–124 (2002). https://doi.org/10.1385/BTER:87:1-3:113

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:87:1-3:113

Index Entries

Navigation