Skip to main content

Arabidopsis thaliana Floral Dip Transformation Method

  • Protocol
Agrobacterium Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 343))

Summary

Arabidopsis floral dip transformation is notable for a number of reasons. First, it is strikingly simple to perform. Agrobacterium is applied to flowering Arabidopsis plants that subsequently set seed, and transgenic plants are then selected among the progeny seedlings. Because no plant tissue culture is required, somaclonal variation is avoided, and the procedure can be performed easily by nonspecialists. Success rates are high: it is common that 1% of the progeny seedlings are transgenic. The biology behind the method is interesting: Arabidopsis and some related Brassicaceae are apparently unique in allowing exogenously applied Agrobacterium to colonize the interior of developing ovaries, where female gametophyte cell lineages are transformed. The availability of the method has had a transformative effect on the overall practice of plant molecular biology, as the generation and analysis of large numbers of transgenic plants is now routine in hundreds of laboratories. The method has been exploited in a genomics context to make stable gene knockout plant lines for most Arabidopsis genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clough, S. J. and Bent, A. F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743.

    Article  PubMed  CAS  Google Scholar 

  2. Bechtold, N., Ellis, J., and Pelletier, G. (1993) In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C. R. Acad. Sci. Paris Life Sci. 316, 1194–1199.

    CAS  Google Scholar 

  3. Feldmann, K. A. and Marks, M. D. (1987) Agrobacterium mediated transformation of germinating seeds of Arabidopsis thaliana: a non-tissue culture approach. Mol. Gen. Genet. 208, 1–9.

    Article  CAS  Google Scholar 

  4. Bent, A. F. (2000) Arabidopsis in planta transformation. Uses, mechanisms, and prospects for transformation of other species. Plant Physiol. 124, 1540–1547.

    Article  PubMed  CAS  Google Scholar 

  5. Weigel, D., Ahn, J. H., Blàzquez, M. A., et al. (2000) Activation tagging in Arabidopsis. Plant Physiol. 122, 1003–1014.

    Article  PubMed  CAS  Google Scholar 

  6. Alonso, J. M., Stepanova, A. N., Leisse, T. J., et al. (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301, 653–657.

    Article  PubMed  Google Scholar 

  7. Ye, G. N., Stone, D., Pang, S. Z., Creely, W., Gonzalez, K., and Hinchee, M. (1999) Arabidopsis ovule is the target for Agrobacterium in planta vacuum infiltration transformation. Plant J. 19, 249–257.

    Article  PubMed  Google Scholar 

  8. Desfeux, C., Clough, S. J., and Bent, A. F. (2000) Female reproductive tissues are the primary target of Agrobacterium-mediated transformation by the Arabidopsis floral-dip method. Plant Physiol. 123, 895–904.

    Article  PubMed  CAS  Google Scholar 

  9. Bechtold, N., Jaudeau, B., Jolivet, S., et al. (2000) The maternal chromosome set is the target of the T-DNA in the in planta transformation of Arabidopsis thaliana. Genetics 155, 1875–1887.

    PubMed  CAS  Google Scholar 

  10. Bechtold, N., Jolivet, S., Voisin, R., and Pelletier, G. (2003) The endosperm and the embryo of Arabidopsis thaliana are independently transformed through infiltration by Agrobacterium tumefaciens. Transgenic Res. 12, 509–517.

    Article  PubMed  CAS  Google Scholar 

  11. Labra, M., Vannini, C., Grassi, F., et al. (2004) Genomic stability in Arabidopsis thaliana transgenic plants obtained by floral dip. Theor. Appl. Genet. 109, 1512–1518.

    Article  PubMed  CAS  Google Scholar 

  12. Nacry, P., Camilleri, C., Courtial, B., Caboche, M., and Bouchez, D. (1998) Major chromosomal rearrangements induced by T-DNA transformation in Arabidopsis. Genetics 149, 641–650.

    PubMed  CAS  Google Scholar 

  13. Lechtenberg, B., Schubert, D., Forsbach, A., Gils, M., and Schmidt, R. (2003) Neither inverted repeat T-DNA configurations nor arrangements of tandemly repeated transgenes are sufficient to trigger transgene silencing. Plant J. 34, 507–517.

    Article  PubMed  CAS  Google Scholar 

  14. Negruk, V., Eisner, G., and Lemieux, B. (1996) Addition-deletion mutations in transgenic Arabidopsis thaliana generated by the seed co-cultivation method. Genome 39, 1117–1122.

    Article  PubMed  CAS  Google Scholar 

  15. Poirier, Y., Ventre, G., and Nawrath, C. (2000) High-frequency linkage of co-expressing T-DNA in transgenic Arabidopsis thaliana transformed by vacuum-infiltration of Agrobacterium tumefaciens. Theor. Appl. Genet. 100, 487–493.

    Article  CAS  Google Scholar 

  16. Broothaerts, W., Mitchell, H. J., Weir, B., et al. (2005) Gene transfer to plants by diverse species of bacteria. Nature 433, 629–633.

    Article  PubMed  CAS  Google Scholar 

  17. Liu, F., Cao, M. Q., Yao, L., Li, Y., Robaglia, C., and Tourneur, C. (1998) In planta transformation of pakchoi (Brassica campestris L. ssp. Chinensis) by infiltration of adult plants with Agrobacterium. Acta Hort. 467, 187–192.

    Google Scholar 

  18. Tague, B. W. (2001) Germ-line transformation of Arabidopsis lasiocarpa. Transgen. Res. 10, 259–267.

    Article  CAS  Google Scholar 

  19. Curtis, I. S. and Nam, H. G. (2001) Transgenic radish (Raphanus sativus L. longipinnatus Bailey) by floral-dip method-plant development and surfactant are important in optimizing transformation efficiency. Transgen. Res. 10, 363–371.

    Article  CAS  Google Scholar 

  20. Inan, G., Zhang, Q., Li, P., et al. (2004) Salt cress. A halophyte and cryophyte Arabidopsis relative model system and its applicability to molecular genetic analyses of growth and development of extremophiles. Plant Physiol. 135, 1718–1737.

    Article  PubMed  CAS  Google Scholar 

  21. Wang, W. C., Menon, G., and Hansen, G. (2003) Development of a novel Agrobacterium-mediated transformation method to recover transgenic Brassica napus. Plant Cell Rep. 22, 274–281.

    Article  PubMed  Google Scholar 

  22. Trieu, A. T., Burleigh, S. H., Kardailsky, I. V., et al. (2000) Transformation of Medicago truncatula via infiltration of seedlings or flowering plants with Agrobacterium. Plant J. 22, 531–541.

    Article  PubMed  CAS  Google Scholar 

  23. Koncz, C. and Schell, J. (1986) The promoter of the TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol. Gen. Genet. 204, 383–396.

    Article  CAS  Google Scholar 

  24. Curtis, M. D. and Grossniklaus, U. (2003) A gateway cloning vector set for highthroughput functional analysis of genes in planta. Plant Physiol. 133, 462–469.

    Article  PubMed  CAS  Google Scholar 

  25. Ausubel, F. M., Brent, R., Kingston, R. E., et al. (1997) Current Protocols in Molecular Biology. John Wiley & Sons, New York.

    Google Scholar 

  26. Schubert, D., Lechtenberg, B., Forsbach, A., Gils, M., Bahadur, S., and Schmidt, R. (2004) Silencing in Arabidopsis T-DNA transformants: the predominant role of a gene-specific RNA sensing mechanism versus position effects. Plant Cell 16, 2561–2572.

    Article  PubMed  CAS  Google Scholar 

  27. Luo, Z. Q., Clemente, T. E., and Farrand, S. K. (2001) Construction of a derivative of Agrobacterium tumefaciens C58 that does not mutate to tetracycline resistance. Mol. Plant Microbe Interact. 14, 98–103.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Bent, A. (2006). Arabidopsis thaliana Floral Dip Transformation Method. In: Wang, K. (eds) Agrobacterium Protocols. Methods in Molecular Biology, vol 343. Humana Press. https://doi.org/10.1385/1-59745-130-4:87

Download citation

  • DOI: https://doi.org/10.1385/1-59745-130-4:87

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-536-1

  • Online ISBN: 978-1-59745-130-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics