Skip to main content

Refolding of Inclusion Body Proteins

  • Protocol
Molecular Diagnosis of Infectious Diseases

Part of the book series: Methods in Molecular Medicineā„¢ ((MIMM,volume 94))

Abstract

Genome sequencing projects have led to the identification of an enormous number of open reading frames that code for unknown proteins. Elucidation of the structure and function of these proteins makes it necessary to produce proteins fast, in high yields and at low cost. The recombinant expression of proteins in bacterial hosts often results in the formation of inclusion bodies. Here, the protein accumulates in large quantities separated from the cellular protein. However, the protein is insoluble and inactive. Thus, it is necessary to establish efficient refolding protocols. Progress has been made recently in this field concerning refolding strategies, the use of low-molecular-weight additives as folding enhancers, and the determination of optimum refolding parameters. Here we present an overview of the refolding technology and give a standard protocol for inclusion body refolding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Service, R. F. (2002) Structural genomics. Tapping DNA for structures produces a trickle. Science 298, 948ā€“950.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  2. Christendat, D., Yee, A., Dharamsi, A., et al. (2000) Structural proteomics of an archaeon. Nat. Struct. Biol. 7, 903ā€“909.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  3. Marston, F. A. (1986) The purification of eukaryotic polypeptides synthesized in Escherichia coli. Biochem. J. 240, 1ā€“12.

    PubMedĀ  CASĀ  Google ScholarĀ 

  4. King, J., Haase-Pettingell, C., Robinson, A. S., Speed, M., and Mitraki, A. (1996) Thermolabile folding intermediates: inclusion body precursors and chaperonin substrates. FASEB J. 10, 57ā€“66.

    PubMedĀ  CASĀ  Google ScholarĀ 

  5. Corchero, J. L., Viaplana, E., Benito, A., and Villaverde, A. (1996) The position of the heterologous domain can influence the solubility and proteolysis of beta-galactosidase fusion proteins in E. coli. J. Biotechnol. 48, 191ā€“200.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  6. Zettlmeissl, G., Rudolph, R., and Jaenicke, R. (1979) Reconstitution of lactic dehydrogenase. Noncovalent aggregation vs. reactivation. 1. Physical properties and kinetics of aggregation. Biochemistry 18, 5567ā€“5571.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  7. Kiefhaber, T., Rudolph, R., Kohler, H. H., and Buchner, J. (1991) Protein aggregation in vitro and in vivo: a quantitative model of the kinetic competition between folding and aggregation. Biotechnology (NY) 9, 825ā€“829.

    ArticleĀ  CASĀ  Google ScholarĀ 

  8. Schein, C. H. and Noteborn, M. H. M. (1988) Formation of soluble recombinant proteins in Escherichia coli is favored by lower growth temperature. Biotechnology 6, 291ā€“294.

    ArticleĀ  CASĀ  Google ScholarĀ 

  9. Ceciliani, F., Caramori, T., Ronchi, S., Tedeschi, G., Mortarino, M., and Galizzi, A. (2000) Cloning, overexpression, and purification of Escherichia coli quinolinate synthetase. Protein Expr. Purif. 18, 64ā€“70.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  10. Lorimer, G. H. (1996) A quantitative assessment of the role of the chaperonin proteins in protein folding in vivo. FASEB J. 10, 5ā€“9.

    PubMedĀ  CASĀ  Google ScholarĀ 

  11. Thomas, J. G. and Baneyx, F. (1996) Protein misfolding and inclusion body formation in recombinant Escherichia coli cells overexpressing heat-shock proteins. J. Biol. Chem. 271, 11,141ā€“11,147.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  12. Goff, S. A. and Goldberg, A. L. (1985) Production of abnormal proteins in E. coli stimulates transcription of lon and other heat shock genes. Cell 41, 587ā€“595.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  13. Jurgen, B., Lin, H. Y., Riemschneider, S., et al. (2000) Monitoring of genes that respond to overproduction of an insoluble recombinant protein in Escherichia coli glucose-limited fed-batch fermentations. Biotechnol. Bioeng. 70, 217ā€“224.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  14. Cheng, Y. S., Kwoh, D. Y., Kwoh, T. J., Soltvedt, B. C., and Zipser, D. (1981) Stabilization of a degradable protein by its overexpression in Escherichia coli. Gene 14, 121ā€“130.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  15. Prouty, W. F., Karnovsky, M. J., and Goldberg, A. L. (1975) Degradation of abnormal proteins in Escherichia coli. Formation of protein inclusions in cells exposed to amino acid analogs. J. Biol. Chem. 250, 1112ā€“1122.

    PubMedĀ  CASĀ  Google ScholarĀ 

  16. Lilie, H., Schwarz, E., and Rudolph, R. (1998) Advances in refolding of proteins produced in E. coli. Curr. Opin. Biotechnol. 9, 497ā€“501.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  17. Allen, S. P., Polazzi, J. O., Gierse, J. K., and Easton, A. M. (1992) Two novel heat shock genes encoding proteins produced in response to heterologous protein expression in Escherichia coli. J. Bacteriol. 174, 6938ā€“6947.

    PubMedĀ  CASĀ  Google ScholarĀ 

  18. Carrio, M. M. and Villaverde, A. (2001) Protein aggregation as bacterial inclusion bodies is reversible. FEBS Lett. 489, 29ā€“33.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  19. Oberg, K., Chrunyk, B. A., Wetzel, R., and Fink, A. L. (1994) Nativelike secondary structure in interleukin-1 beta inclusion bodies by attenuated total reflectance FTIR. Biochemistry 33, 2628ā€“2634.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  20. Mukhopadhyay, A. (1997) Inclusion bodies and purification of proteins in biologically active forms. Adv. Biochem. Eng. Biotechnol. 56, 61ā€“109.

    PubMedĀ  CASĀ  Google ScholarĀ 

  21. Rudolph, R., Bƶhm, G., Lilie, H., and Jaenicke, R. (1997) Folding proteins, in Protein Function, a Practical Approach (Creighton, T. E., ed.), IRL Press, Oxford, pp. 57ā€“99.

    Google ScholarĀ 

  22. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248ā€“254.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  23. Buchner, J. and Rudolph, R. (1991) Renaturation, purification and characterization of recombinant Fab-fragments produced in Escherichia coli. Biotechnology (NY) 9, 157ā€“162.

    ArticleĀ  CASĀ  Google ScholarĀ 

  24. Katoh, S. and Katoh, Y. (2000) Continuous refolding of lysozyme with fed-batch addition of denatured protein solution. Process Biochem. 35, 1119ā€“1124.

    ArticleĀ  CASĀ  Google ScholarĀ 

  25. Varnerin, J. P., Smith, T., Rosenblum, C. I., et al. (1998) Production of leptin in Escherichia coli: a comparison of methods. Protein Expr. Purif. 14, 335ā€“342.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  26. West, S. M., Chaudhuri, J. B., and Howell, J. A. (1998) Improved protein refolding using hollow-fibre membrane dialysis. Biotechnol. Bioeng. 57, 590ā€“599.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  27. Fahey, E. M., Chaudhuri, J. B., and Binding, P. (2000) Refolding and purification of a urokinase plasminogen activator fragment by chromatography. J. Chromatogr. B Biomed. Sci. Appl. 737, 225ā€“235.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  28. Buchner, J., Pastan, I., and Brinkmann, U. (1992) A method for increasing the yield of properly folded recombinant fusion proteins: single-chain immunotoxins from renaturation of bacterial inclusion bodies. Anal. Biochem. 205, 263ā€“270.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  29. De Bernardez, C. E., Schwarz, E., and Rudolph, R. (1999) Inhibition of aggregation side reactions during in vitro protein folding. Methods Enzymol. 309, 217ā€“236.

    ArticleĀ  Google ScholarĀ 

  30. Chalmers, J. J., Kim, E., Telford, J. N., et al. (1990) Effects of temperature on Escherichia coli overproducing beta-lactamase or human epidermal growth factor. Appl. Environ. Microbiol. 56, 104ā€“111.

    PubMedĀ  CASĀ  Google ScholarĀ 

  31. Rajesh Singh, R. and Appu Rao, A. G. (2002) Reductive unfolding and oxidative refolding of a Bowman-Birk inhibitor from horsegram seeds (Dolichos biflorus): evidence for ā€œhyperreactiveā€ disulfide bonds and rate-limiting nature of disulfide isomerization in folding. Biochim. Biophys. Acta 1597, 280ā€“291.

    Google ScholarĀ 

  32. Thies, M. J., Talamo, F., Mayer, M., et al. (2002) Folding and oxidation of the antibody domain C(H)3. J. Mol. Biol. 319, 1267ā€“1277.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  33. Chatrenet, B. and Chang, J. Y. (1992) The folding of hirudin adopts a mechanism of trial and error. J. Biol. Chem. 267, 3038ā€“3043.

    PubMedĀ  CASĀ  Google ScholarĀ 

  34. Wetlaufer, D. B., Branca, P. A., and Chen, G. X. (1987) The oxidative folding of proteins by disulfide plus thiol does not correlate with redox potential. Protein Eng. 1, 141ā€“146.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  35. Winter, J., Klappa, P., Freedman, R. B., Lilie, H., and Rudolph, R. (2002) Catalytic activity and chaperone function of human protein-disulfide isomerase are required for the efficient refolding of proinsulin. J. Biol. Chem. 277, 310ā€“317.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  36. Woycechowsky, K. J., Wittrup, K. D., and Raines, R. T. (1999) A small-molecule catalyst of protein folding in vitro and in vivo. Chem. Biol. 6, 871ā€“879.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  37. Jaenicke, R. and Rudolph, R. (1989) Folding proteins, in Protein Structure, a Practical Approach (Creighthon, T. E., ed.), IRL Press, Oxford, pp. 191ā€“223.

    Google ScholarĀ 

  38. Goldberg, M. E., Expert-Bezancon, N., Vuillard, L., and Rabilloud, T. (1996) Non-detergent sulphobetaines: a new class of molecules that facilitate in vitro protein renaturation. Fold. Des 1, 21ā€“27.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  39. Bell, S., Hansen, S., and Buchner, J. (2002) Refolding and structural characterization of the human p53 tumor suppressor protein. Biophys. Chem. 96, 243ā€“257.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  40. Summers, C. A. and Flowers, R. A. (2000) Protein renaturation by the liquid organic salt ethylammonium nitrate. Protein Sci. 9, 2001ā€“2008.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  41. Armstrong, N., de Lencastre, A., and Gouaux, E. (1999) A new protein folding screen: application to the ligand binding domains of a glutamate and kainate receptor and to lysozyme and carbonic anhydrase. Protein Sci. 8, 1475ā€“1483.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  42. Chen, G. Q. and Gouaux, E. (1997) Overexpression of a glutamate receptor (GluR2) ligand binding domain in Escherichia coli: application of a novel protein folding screen. Proc. Natl. Acad. Sci. USA 94, 13431ā€“13436.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  43. Box, G. E. P., Hunter, W. G., and Hunter, J. S. (1978) Statistics for Experimenters. John Wiley & Sons, New York.

    Google ScholarĀ 

  44. Rehm, B. H., Qi, Q., Beermann, B. B., Hinz, H. J., and Steinbuchel, A. (2001) Matrixassisted in vitro refolding of Pseudomonas aeruginosa class II polyhydroxyalkanoate synthase from inclusion bodies produced in recombinant Escherichia coli. Biochem. J. 358, 263ā€“268.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  45. Berdichevsky, Y., Lamed, R., Frenkel, D., et al. (1999) Matrix-assisted refolding of single-chain Fv-cellulose binding domain fusion proteins. Protein Expr. Purif. 17, 249ā€“259.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  46. Stempfer, G., Holl-Neugebauer, B., Kopetzki, E., and Rudolph, R. (1996) A fusion protein designed for noncovalent immobilization: stability, enzymatic activity, and use in an enzyme reactor. Nat. Biotechnol. 14, 481ā€“484.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  47. Stubenrauch, K., Bachmann, A., Rudolph, R., and Lilie, H. (2000) Purification of a viral coat protein by an engineered polyionic sequence. J. Chromatogr. B Biomed. Sci. Appl. 737, 77ā€“84.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  48. Goto, M., Hashimoto, Y., Fujita, T., Ono, T., and Furusaki, S. (2000) Important parameters affecting efficiency of protein refolding by reversed micelles. Biotechnol. Prog. 16, 1079ā€“1085.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  49. Walter, S. and Buchner, J. (2002) Molecular chaperonesā€”cellular machines for protein folding. Angew. Chem. Int. Ed. 41, 1098ā€“1113.

    ArticleĀ  CASĀ  Google ScholarĀ 

  50. Levy, R., Weiss, R., Chen, G., Iverson, B. L., and Georgiou, G. (2001) Production of correctly folded Fab antibody fragment in the cytoplasm of Escherichia coli trxB gor mutants via the coexpression of molecular chaperones. Protein Expr. Purif. 23, 338ā€“347.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  51. Nishihara, K., Kanemori, M., Kitagawa, M., Yanagi, H., and Yura, T. (1998) Chaperone coexpression plasmids: differential and synergistic roles of DnaK-DnaJ-GrpE and GroEL-GroES in assisting folding of an allergen of Japanese cedar pollen, Cryj2, in Escherichia coli. Appl. Environ. Microbiol. 64, 1694ā€“1699.

    PubMedĀ  CASĀ  Google ScholarĀ 

  52. Nishihara, K., Kanemori, M., Yanagi, H., and Yura, T. (2000) Overexpression of trigger factor prevents aggregation of recombinant proteins in Escherichia coli. Appl. Environ. Microbiol. 66, 884ā€“889.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  53. Goloubinoff, P., Gatenby, A. A., and Lorimer, G. H. (1989) GroE heat-shock proteins promote assembly of foreign prokaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli. Nature 337, 44ā€“47.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  54. Thomas, J. G., Ayling, A., and Baneyx, F. (1997) Molecular chaperones, folding catalysts, and the recovery of active recombinant proteins from E. coli. To fold or to refold. Appl. Biochem. Biotechnol. 66, 197ā€“238.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  55. Humphreys, D. P., Weir, N., Lawson, A., Mountain, A., and Lund, P. A. (1996) Co-expression of human protein disulphide isomerase (PDI) can increase the yield of an antibody Fabā€² fragment expressed in Escherichia coli. FEBS Lett. 380, 194ā€“197.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  56. Ostermeier, M., De Sutter, K., and Georgiou, G. (1996) Eukaryotic protein disulfide isomerase complements Escherichia coli dsbA mutants and increases the yield of a heterologous secreted protein with disulfide bonds. J. Biol. Chem. 271, 10,616ā€“10,622.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  57. Mayer, M., Kies, U., Kammermeier, R., and Buchner, J. (2000) BiP and PDI cooperate in the oxidative folding of antibodies in vitro. J. Biol. Chem. 275, 29421ā€“29425.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  58. Buchner, J., Brinkmann, U., and Pastan, I. (1992) Renaturation of a single-chain immunotoxin facilitated by chaperones and protein disulfide isomerase. Biotechnology (NY) 10, 682ā€“685.

    ArticleĀ  CASĀ  Google ScholarĀ 

  59. Tran-Moseman, A., Schauer, N., and De Bernardez, C. E. (1999) Renaturation of Escherichia coli-derived recombinant human macrophage colony-stimulating factor. Protein Expr. Purif. 16, 181ā€“189.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  60. Wetlaufer, D. B. and Xie, Y. (1995) Control of aggregation in protein refolding: a variety of surfactants promote renaturation of carbonic anhydrase II. Protein Sci. 4, 1535ā€“1543.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  61. Prinz, W. A., Aslund, F., Holmgren, A., and Beckwith, J. (1997) The role of the thioredoxin and glutaredoxin pathways in reducing protein disulfide bonds in the Escherichia coli cytoplasm. J. Biol. Chem. 272, 15,661ā€“15,667.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  62. Stewart, E. J., Aslund, F., and Beckwith, J. (1998) Disulfide bond formation in the Escherichia coli cytoplasm: an in vivo role reversal for the thioredoxins. EMBO J. 17, 5543ā€“5550.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  63. Cole, P. A. (1996) Chaperone-assisted protein expression. Structure 4, 239ā€“242.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2004 Humana Press Inc.

About this protocol

Cite this protocol

Mayer, M., Buchner, J. (2004). Refolding of Inclusion Body Proteins. In: Decler, J., Reischl, U. (eds) Molecular Diagnosis of Infectious Diseases. Methods in Molecular Medicineā„¢, vol 94. Humana Press. https://doi.org/10.1385/1-59259-679-7:239

Download citation

  • DOI: https://doi.org/10.1385/1-59259-679-7:239

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-221-6

  • Online ISBN: 978-1-59259-679-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics