Skip to main content
Log in

Effect of growth rates and temperature gradients on the spacing and undercooling in the broken-lamellar eutectic growth (Sn-Zn eutectic system)

  • Testing And Evaluation
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The Sn-Zn system has a eutectic structure of a broken lamellar type. Dependence of the broken-lamellar spacing λ and the undercooling ΔT on V and G were investigated, and the relationship between them was examined. A Sn-Zn (99.99%) high-purity eutectic alloy was melted in a graphite crucible under vacuum atmosphere. This eutectic alloy was directionally solidified upward with a constant growth rate V (8.30 µm/s) and different temperature gradients G (1.86–6.52 K/mm), and also with a constant temperature gradient (6.52 K/mm) and different growth rates (8.30–165.13 µm/s) in a Bridgman-type directional solidification furnace. The lamellar spacings λ were measured from both transverse and longitudinal sections of the specimen. The λ values from the transverse section were used for calculations and comparisons with the previous works. The undercooling values ΔT were obtained using growth rate and system parameters K 1 and K 2. It was found that the values of λ decreased while V and G increased. The relationships between lamellar spacing λ and solidification parameters V and G were obtained by linear regression analysis method. The λ2 V, ΔTλ, ΔTV −5, and λ3 G values were determined using λ, ΔT, V, and G values. The experimentally obtained values for the broken-lamellar growth (Sn-Zn eutectic system) were in good agreement with the theoretical and other experimental values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.W. Kraft and D.L.A. Albright: “Microstructure of Unidirectionally Solidified Al-CuAl2 Eutectic,” Trans. Met. Soc. AIME, 1961, 221, pp. 95–102.

    CAS  Google Scholar 

  2. H.E. Cline: Metall. Trans., 1971, 2, p. 189.

    Article  CAS  Google Scholar 

  3. E.R. Thompson and F.D. Lemkey: Trans ASM, 1969, 62, p. 140.

    CAS  Google Scholar 

  4. M.F.X. Gigliotti, R. Melvin, F. Michael, A.David, S. Sherwin, and A. Charles: “Transverse Ductile Fiber Reinforced Eutectic Nickel-Base Superalloys,” U.S. Patent No. 4 292 076, 1981.

  5. R. Caram and S. Milenkovic: “Microstructure of Ni-Ni3Si Eutectic Alloy Produced by Directional Solidification,” J. Cryst. Growth, 1999, 198/199, pp. 844–49.

    Article  CAS  Google Scholar 

  6. F.S. Galasso: J. Metals, 1967, 19, p. 17.

    Google Scholar 

  7. M.N. Crocker, D. Baragar, and R.W. Smith: “Anamolous Eutectic Growth,” J. Cryst. Growth, 1975, 30, pp. 198–212.

    Article  Google Scholar 

  8. R. Elliot, Eutectic Solidification Processings, Butterworths, London, UK, 1983, p. 136.

    Google Scholar 

  9. J.M. Liu, Z.G. Liu, and Z.C. Wu: “Spacing Selection for an Sn-Pb Lamellar Eutectic During Directional Solidified,” Mater. Sci. Eng. 1993, A167, p. 87.

    CAS  Google Scholar 

  10. M.R. Aguiar and R. Caram: “Directional Solidified of a Sn-Se Eutectic Alloy Using the Bridgman-Stockbarer Method,” J. Cryst. Growth, 1996, 166, pp. 398–401.

    Article  CAS  Google Scholar 

  11. K.A. Jackson and J.D. Hunt: “Lamellar and Eutectic Growth,” Trans. Met. Soc. AIME, 1966, 236, pp. 1129–42.

    CAS  Google Scholar 

  12. J.M. Liu: “Dynamics of Spacing Selection of a Lamellar Eutectic During Directional Solidification,” Mater. Sci. Eng., 1992, A157, pp. 73–78.

    CAS  Google Scholar 

  13. H.E. Cline: “Strengthening of Lamellar vs Equiaxed Ag-Cu Eutectic,” Acta Metall., 1972, 18, pp. 315–23.

    Google Scholar 

  14. R.M. Jordan and J.D. Hunt: “The Growth of Lamellar Eutectic Structures in the Pb-Sn and Al-CuAl2 Systems,” Metall. Trans., 1971, 2, pp. 3401–10.

    CAS  Google Scholar 

  15. T. Sato and Y. Sayama: “Completely and Partially Co-operative Growth of Eutectic,” J. Cryst. Growth, 1974, 22, pp. 259–71.

    Article  CAS  Google Scholar 

  16. G.E. Nash: “A Self Consistent Theory of Steady State Lamellar Solidification in Binary Eutectic Systems,” J. Cryst. Growth, 1977, 38, pp. 155–80.

    Article  CAS  Google Scholar 

  17. H.E. Cline: “Growth of Eutectic Alloy, Tin Films,” J. Appl. Phys., 1979, 50, p. 4780; Mater. Sci. Eng. 1984, 65, pp. 93–100.

    Article  CAS  Google Scholar 

  18. J.S. Langer: “Eutectic Solidification,” Phys. Rev. Lett., 1980, 44, p. 1023.

    Article  CAS  Google Scholar 

  19. V. Dayte and J.S. Langer: “Stability of Thin Lamellar Eutectic Growth,” Phys. Rev. B, 1981, 24, p. 4155.

    Article  Google Scholar 

  20. D.A. Kessler and H. Levine: “Computational Approach to Steady State Eutectic Growth,” J. Cryst. Growth, 1989, 94, p. 871.

    Article  CAS  Google Scholar 

  21. A. Karma: “Wavelength Selection in Directional,” Phys. Rev. Lett., 1986, 57, p. 858.

    Article  Google Scholar 

  22. A. Karma and P. Pelce: “Oscillatory of Deer Cels in Directional Solidification,” Phys. Rev. A, 1989, 39, p. 4162.

    Article  Google Scholar 

  23. C. Zener: Trans. AIME, 1946, 167, p. 550.

    Google Scholar 

  24. V. Seetharaman and R. Trivedi: “Eutectic Growth,” Metall. Trans., 1988, 19A, pp. 2955–64.

    CAS  Google Scholar 

  25. R. Trivedi, J.T. Mason, J.D. Verhoeven, and W. Kurz: “Eutectic Spacing Selection in Lead-Based Alloy Systems,” Metall. Trans., 1991, 22A, pp. 2523–33.

    CAS  Google Scholar 

  26. H. Müller-Kurumbhaar and W. Kurz: in Material Science and Technology: A Comprehensive Treatment, Vol. 5, R.W. Chan, P. Haasen, and E.J. Kramer, ed., VCH, New York, 1991, p. 554.

    Google Scholar 

  27. R. Elliot: “Eutectic Solidification,” Mater. Sci. Eng., 1984, 65, pp. 85–92.

    Article  Google Scholar 

  28. S.C. Gill and W. Kurz: “Rapid Solidification Al-Cu Alloys—I. Experiment Determination of the Microstructure Selection MAP,” Acta Metall., 1993, 41(12), pp. 3563–73.

    Article  CAS  Google Scholar 

  29. A. Ourdjini, J. Liu, and R. Elliott: “Eutectic Spacing Selection in the Al-Cu System,” Mater. Sci. Technol., 1994, 10, pp. 312–18.

    CAS  Google Scholar 

  30. K.B. Kim, J. Liu, N. Maraşlı, and J.D. Hunt: “The Effect of Different Atomic Volumes in the Three Phases. During Lamellar Eutectic Growth. A Comparison of Experiment and Theory in the Al-Al2Cu System,” Acta Metall., 1995, 43(6), pp. 2143–47.

    Article  CAS  Google Scholar 

  31. M. Tassa and J.D. Hunt: “The Measurement of Al-Cu Dendrite Tip and Eutectic Interface Temperatures and Their Use for Predicting the Extent of the Eutectic Range,” J. Cryst. Growth, 1976, 34, pp. 38–48.

    Article  CAS  Google Scholar 

  32. E. Çadırlı and M. Gündüz: “The Dependence of Lamellar Spacing on Growth Rate and Temperature Gradient in the Lead-Tin Eutectic Alloy,” J. Mater. Process. Technol., 2000, 97, pp. 74–81.

    Article  Google Scholar 

  33. E. Çadırlı, A. Ülgen, and M. Gündüz: “Directional Solidification of the Aluminium-Copper Eutectic Alloy,” Mater. Trans. JIM, 1999, 40(9), pp. 989–96.

    Google Scholar 

  34. H. Jones and W. Kurz: “Ration of Interphase Spacings and Growth Temperature to Growth Velocity in Fe-C and Fe-Fe3 Eutectic Alloys,” Z. Metalkd., 1981, 72, pp. 792–97.

    CAS  Google Scholar 

  35. P. Magnin, J.T. Mason, and R. Trivedi: “Growth of Irregular Eutectics and the Al-Si System,” Acta Metall. Mater., 1991, 39, pp. 469–80.

    Article  CAS  Google Scholar 

  36. Y.X. Zhuang, X.M. Zhang, L.H. Zhu, and Z.Q. Hu: “Eutectic Spacing and Faults of Directionally Solidified Al-Al3Ni Eutectic,” Sci. and Tech. Adv. Mater., 2001, 2, pp. 37–39.

    Article  CAS  Google Scholar 

  37. L.M. Hogan and H. Song: “Interparticle Spacings and Undercooling in Al-Si Eutectic Microstructure,” Metall. Trans., 1987, 18A, pp. 707–13.

    CAS  Google Scholar 

  38. P. Magnin and W. Kurz: “An Analytical Model of Irregular Eutectic Growth and Its Application to Fe-C,” Acta Metall., 1987, 35, pp. 1119–28.

    Article  CAS  Google Scholar 

  39. P. Magnin and R. Trivedi: “Eutectic Growth: A Modification of the Jackson-Hunt Theory,” Acta Metall. Mater., 1991, 39, pp. 453–67.

    Article  CAS  Google Scholar 

  40. P.H. Shingu: J. Appl. Phys., 1979, 50, p. 5743.

    Article  CAS  Google Scholar 

  41. Y. Wang, H. Jones, and P. V. Evans: “Eutectic Solidification Characteristics of Bridgman Growth Al-3Fe-0.1V Alloy,” J. Mater. Sci., 1998, 33, pp. 5205–20.

    Article  CAS  Google Scholar 

  42. M.R. Aguiar and R. Caram: “Lamellar Spacing Selection in a Directional Solidified Sn-Se Eutectic Alloy,” J. Cryst. Growth, 1997, 174, pp. 70–75.

    Article  CAS  Google Scholar 

  43. S. Guldberg and N. Ryum: “Microstructure and Crystallographic Orientation Relationship in Directionally Solidified Mg-Mg17Al12-Eutectic,” Mater. Sci. Eng., 2000, A289, p. 143.

    CAS  Google Scholar 

  44. M. Gündüz: The Measurement of the Solid-Liquid Surface Energy, Ph.D. Thesis, Oxford University, Oxford, UK, 1984, p. 60.

    Google Scholar 

  45. D.G. McCartney: Studies on Cellular and Dendritic Solidification, Ph.D. Thesis, Oxford University, Oxford, UK, 1981, p. 95.

    Google Scholar 

  46. T. Lyman, ed.: Metals Handbook—Fractograph and Atlas of Fractographs, Vol. 8, 8th ed., American Society for Metals (ASM Handbook Committee), Metals Park, OH, 1973, p. 336

    Google Scholar 

  47. F. Vnuk, M. Sahoo, D. Baragor, and R.W. Smith: “Mechanical Properties of Sn-Zn Eutectic Alloys,” J. Mater. Sci., 1980, 15, pp. 2573–80.

    Article  CAS  Google Scholar 

  48. B. Toloui and A. Hellawell: “Phase Separation and Undercooling in Al-Si Eutectic Alloy—The Influence of Freezing Rate and Temperature Gradient,” Acta Metall. 1976, 24, pp. 565–73.

    Article  CAS  Google Scholar 

  49. R. Elliott and S.M.D. Glenister: “Strontium Modification of Al-12.7 wt.% Si Alloys,” Metal Sci., 1981, 4, pp. 181–84.

    Google Scholar 

  50. S. Li, S. Zhao, M. Pan, D. Zhao, X. Chan, O.M. Barabash, and R.I. Barabash: “Solidification and Structural Characteristics of α (Al)-Mg2Si Eutectic,” Mater. Trans. JIM, 1997, 38, pp. 553–59.

    CAS  Google Scholar 

  51. B. Saatci: The Measurement of the Solid-Liquid Surface Energy, D. Phil. Thesis, University of Erciyes, Kayseri, Turkey, 2000, p. 167.

    Google Scholar 

  52. D. Bouchhard and J.S. Kirkaldy: “Prediction of Dendrite Arm Spacings in Unsteady and Steady-State Heat Flow of Unidirectionally Solidified Binary Alloys,” Metall. Mater. Trans., 1997, 28B, pp. 651–63.

    Google Scholar 

  53. D.J. Fisher and W. Kurz: “A Theory of Branching Limited Growth of Irregular Eutectics,” Acta Metall., 1980, 28, pp. 777–94.

    Article  CAS  Google Scholar 

  54. E. Schürman and H. Löblich: Giessereiforschung, 1977, 29, p. 67.

    Google Scholar 

  55. E. Schürman and H. Löblich: 43rd Int. Foundry Congress, Bucharest, 1976, p. 17.

  56. D.J. Fisher: Ecole Polytechnique Federale de Lausanne, Sc.D. Thesis, 1978.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaya, H., Çadırlı, E. & Gündüz, M. Effect of growth rates and temperature gradients on the spacing and undercooling in the broken-lamellar eutectic growth (Sn-Zn eutectic system). J. of Materi Eng and Perform 12, 456–469 (2003). https://doi.org/10.1361/105994903770343024

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1361/105994903770343024

Keywords

Navigation