Skip to main content

Advertisement

Log in

Pathologic Complete Response to Intralesional Interleukin-2 Therapy Associated with Improved Survival in Melanoma Patients with In-Transit Disease

  • Melanomas
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

An Erratum to this article was published on 12 December 2014

ABSTRACT

Purpose

Melanoma patients with in-transit disease have a high mortality rate despite various treatment strategies. The aim of this study was to validate the role of intralesional interleukin (IL)-2, to understand its mechanism of action, and to better understand factors that may influence its response.

Methods

We retrospectively collected the clinicopathological data of 31 consecutive patients who presented to a tertiary care cancer center for treatment of in-transit melanoma with intralesional IL-2. Kaplan–Meier survival curves and multivariable Cox regression analysis were performed. Immunohistochemistry (IHC) was used to better understand the immune response to localized IL-2 therapy. Targeted next-generation sequencing was performed to genomically characterize the tumors.

Results

Ten patients (10/31, 32 %) achieved a pathologic complete response (pCR), 17/21 (55 %) had a partial response, and 4/21 (19 %) had progressive disease on treatment. pCR to IL-2 therapy was associated with overall survival (log-rank p = 0.004) and improved progression-free survival (PFS) [adjusted hazard ratio (HR) 0.11; 95 % CI 0.02–0.47; p = 0.003). A higher CD8+ T cell infiltrate was identified in in-transit lesions with a pCR compared with the other lesions (mean IHC score 3.78 vs. 2.61; p = 0.01). Patients with an elevated CD8+ infiltrate demonstrated an improved PFS (unadjusted HR 0.08; 95 % CI 0.01–0.52; p = 0.008).

Conclusions

Thirty-two percent of patients achieved pCR with intralesional IL-2 therapy and had a significantly improved PFS compared with the rest of the cohort, which may be explained by a systemic CD8+ T-cell response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Howlader N, Noone AM, Krapcho M, et al., eds. SEER Cancer Statistics Review, 1975-2011. Bethesda: National Cancer Institute. Based on November 2013 SEER data submission, posted to the SEER website, April 2014.

  2. Borgstein PJ, Meijer S, van Diest PJ. Are locoregional cutaneous metastases in melanoma predictable? Ann Surg Oncol. 1999;6(3):315–21.

    Article  CAS  PubMed  Google Scholar 

  3. Meier F, Will S, Ellwanger U, et al. Metastatic pathways and time courses in the orderly progression of cutaneous melanoma. Br J Dermatol. 2002;147(1):62–70.

    Article  CAS  PubMed  Google Scholar 

  4. Melanoma of the Skin. In: Edge SB, Byrd DR, Compton CC, Fritz AG, Greene FL, Trotti A III, eds. American Joint Committee on Cancer Staging Manual. 7th ed. New York: Springer; 2010:325.

  5. Speicher PJ, Tyler DS, Mosca PJ. Management of in-transit malignant melanoma. In: Duc GHT, ed. Melanoma: from early detection to treatment: InTech; 2013.

  6. Balch CM, Gershenwald JE, Soong SJ, et al. Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol. 2009;27(36):6199–206.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Weide B, Faller C, Buttner P, et al. Prognostic factors of melanoma patients with satellite or in-transit metastasis at the time of stage III diagnosis. PLoS One. 2013;8(4):e63137.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Pawlik TM, Ross MI, Thompson JF, Eggermont AM, Gershenwald JE. The risk of in-transit melanoma metastasis depends on tumor biology and not the surgical approach to regional lymph nodes. J Clin Oncol. 2005;23(21):4588–90.

    Article  PubMed  Google Scholar 

  9. Hayes AJ, Clark MA, Harries M, Thomas JM. Management of in-transit metastases from cutaneous malignant melanoma. Br J Surg. 2004;91(6):673–82.

    Article  CAS  PubMed  Google Scholar 

  10. Storm FK, Morton DL. Value of therapeutic hyperthermic limb perfusion in advanced recurrent melanoma of the lower extremity. Am J Surg. 1985;150(1):32–5.

    Article  CAS  PubMed  Google Scholar 

  11. Kroon BB, Klaase JM, van Geel BN, Eggermont AM, Franklin HR, van Dongen JA. Results of a double perfusion schedule with melphalan in patients with melanoma of the lower limb. Eur J Cancer. 1993;29A(3):325–8.

    Article  CAS  PubMed  Google Scholar 

  12. Turley RS, Raymond AK, Tyler DS. Regional treatment strategies for in-transit melanoma metastasis. Surg Oncol Clin N Am. 2011;20(1):79–103.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Moreno-Ramirez D, de la Cruz-Merino L, Ferrandiz L, Villegas-Portero R, Nieto-Garcia A. Isolated limb perfusion for malignant melanoma: systematic review on effectiveness and safety. Oncologist. 2010;15(4):416–27.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Mian R, Henderson MA, Speakman D, Finkelde D, Ainslie J, McKenzie A. Isolated limb infusion for melanoma: a simple alternative to isolated limb perfusion. Can J Surg. 2001;44(3):189–92.

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Bonenkamp JJ, Thompson JF, de Wilt JH, Doubrovsky A, de Faria Lima R, Kam PC. Isolated limb infusion with fotemustine after dacarbazine chemosensitisation for inoperable loco-regional melanoma recurrence. Eur J Surg Oncol. 2004;30(10):1107–12.

  16. Beasley GM, Caudle A, Petersen RP, et al. A multi-institutional experience of isolated limb infusion: defining response and toxicity in the US. J Am Coll Surg. 2009;208(5):706–15; discussion 15-7.

  17. Beasley GM, Petersen RP, Yoo J, et al. Isolated limb infusion for in-transit malignant melanoma of the extremity: a well-tolerated but less effective alternative to hyperthermic isolated limb perfusion. Ann Surg Oncol. 2008;15(8):2195–205.

    Article  PubMed  Google Scholar 

  18. Testori A, Faries MB, Thompson JF, et al. Local and intralesional therapy of in-transit melanoma metastases. J Surg Oncol. 2011;104(4):391–6.

    Article  PubMed  Google Scholar 

  19. Morton DL, Eilber FR, Holmes EC, et al. BCG immunotherapy of malignant melanoma: summary of a seven-year experience. Ann Surg. 1974;180(4):635–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Kidner TB, Morton DL, Lee DJ, et al. Combined intralesional Bacille Calmette–Guerin (BCG) and topical imiquimod for in-transit melanoma. J Immunother. 2012;35(9):716–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Green DS, Bodman-Smith MD, Dalgleish AG, Fischer MD. Phase I/II study of topical imiquimod and intralesional interleukin-2 in the treatment of accessible metastases in malignant melanoma. Br J Dermatol. 2007;156(2):337–45.

    Article  CAS  PubMed  Google Scholar 

  22. Utikal J, Zimpfer A, Thoelke A, et al. Complete remission of multiple satellite and in-transit melanoma metastases after sequential treatment with isolated limb perfusion and topical imiquimod. Br J Dermatol. 2006;155(2):488–91.

    Article  CAS  PubMed  Google Scholar 

  23. Otsu U, Fukui N, Iki M, Moriwaki S, Kiyokane K. Case of cutaneous malignant melanoma surviving 16 years with late recurrence. J Dermatol. 2009;36(11):598–603.

    Article  PubMed  Google Scholar 

  24. Boyd KU, Wehrli BM, Temple CL. Intra-lesional interleukin-2 for the treatment of in-transit melanoma. J Surg Oncol. 2011;104(7):711–7.

    Article  CAS  PubMed  Google Scholar 

  25. Ridolfi L, Ridolfi R, Ascari-Raccagni A, et al. Intralesional granulocyte–monocyte colony-stimulating factor followed by subcutaneous interleukin-2 in metastatic melanoma: a pilot study in elderly patients. J Eur Acad Dermatol Venereol. 2001;15(3):218–23.

    Article  CAS  PubMed  Google Scholar 

  26. Radny P, Caroli UM, Bauer J, et al. Phase II trial of intralesional therapy with interleukin-2 in soft-tissue melanoma metastases. Br J Cancer. 2003;89(9):1620–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Dehesa LA, Vilar-Alejo J, Valeron-Almazan P, Carretero G. Experience in the treatment of cutaneous in-transit melanoma metastases and satellitosis with intralesional interleukin-2 [in Spanish]. Actas Dermosifiliogr. 2009;100(7):571–85.

    Article  CAS  PubMed  Google Scholar 

  28. Weide B, Derhovanessian E, Pflugfelder A, et al. High response rate after intratumoral treatment with interleukin-2: results from a phase 2 study in 51 patients with metastasized melanoma. Cancer. 2010;116(17):4139–46.

    Article  CAS  PubMed  Google Scholar 

  29. Sumimoto H, Imabayashi F, Iwata T, Kawakami Y. The BRAF-MAPK signaling pathway is essential for cancer-immune evasion in human melanoma cells. J Exp Med. 2006;203(7):1651–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Khalili JS, Liu S, Rodriguez-Cruz TG, et al. Oncogenic BRAF(V600E) promotes stromal cell-mediated immunosuppression via induction of interleukin-1 in melanoma. Clin Cancer Res. 2012;18(19):5329–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Byers BA, Temple-Oberle CF, Hurdle V, McKinnon JG. Treatment of in-transit melanoma with intra-lesional interleukin-2: a systematic review. J Surg Oncol. 2014;110(6):770–5.

    Article  CAS  PubMed  Google Scholar 

  32. Gutwald J, Groth W, Mahrle G. Peritumoral administered IL-2-induced tumor regression in melanoma. Pilot study [in German]. Hautarzt. 1994;45(8):536–40.

    Article  CAS  PubMed  Google Scholar 

  33. Temple-Oberle CF, Byers BA, Hurdle V, Fyfe A, McKinnon JG. Intra-lesional interleukin-2 therapy for in transit melanoma. J Surg Oncol. 2014;109(4):327–31.

    Article  CAS  PubMed  Google Scholar 

  34. Paulson KG, Iyer JG, Tegeder AR, et al. Transcriptome-wide studies of merkel cell carcinoma and validation of intratumoral CD8+ lymphocyte invasion as an independent predictor of survival. J Clin Oncol. 2011;29(12):1539–46.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Colombino M, Capone M, Lissia A, et al. BRAF/NRAS mutation frequencies among primary tumors and metastases in patients with melanoma. J Clin Oncol. 2012;30(20):2522–9.

    Article  PubMed  Google Scholar 

  36. Beadling C, Jacobson-Dunlop E, Hodi FS, et al. KIT gene mutations and copy number in melanoma subtypes. Clin Cancer Res. 2008;14(21):6821–8.

    Article  CAS  PubMed  Google Scholar 

  37. Augustine CK, Jung SH, Sohn I, et al. Gene expression signatures as a guide to treatment strategies for in-transit metastatic melanoma. Mol Cancer Ther. 2010;9(4):779–90.

    Article  CAS  PubMed  Google Scholar 

  38. Joseph RW, Sullivan RJ, Harrell R, et al. Correlation of NRAS mutations with clinical response to high-dose IL-2 in patients with advanced melanoma. J Immunother. 2012;35(1):66–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Frederick DT, Piris A, Cogdill AP, et al. BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma. Clin Cancer Res. 2013;19(5):1225–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Knight DA, Ngiow SF, Li M, et al. Host immunity contributes to the anti-melanoma activity of BRAF inhibitors. J Clin Invest. 2013;123(3):1371–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Donia M, Fagone P, Nicoletti F, et al. BRAF inhibition improves tumor recognition by the immune system: Potential implications for combinatorial therapies against melanoma involving adoptive T-cell transfer. Oncoimmunology. 2012;1(9):1476–83.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Ji RR, Chasalow SD, Wang L, et al. An immune-active tumor microenvironment favors clinical response to ipilimumab. Cancer Immunol Immunother. 2012;61(7):1019–31.

    Article  CAS  PubMed  Google Scholar 

  43. Drake CG. Combination immunotherapy approaches. Ann Oncol. 2012;23 Suppl 8:viii41-6.

  44. Nespoli L, Uggeri F, Romano F, et al. Modulation of systemic and intestinal immune response by interleukin-2 therapy in gastrointestinal surgical oncology. Personal experience in the context of current knowledge and future perspectives. Anticancer Res. 2012;32(3):989–96.

    CAS  PubMed  Google Scholar 

  45. Den Otter W, Jacobs JJ, Battermann JJ, et al. Local therapy of cancer with free IL-2. Cancer Immunol Immunother. 2008;57(7):931–50.

    Article  CAS  Google Scholar 

  46. Shaker MA, Younes HM. Interleukin-2: evaluation of routes of administration and current delivery systems in cancer therapy. J Pharm Sci. 2009;98(7):2268–98.

    Article  CAS  PubMed  Google Scholar 

  47. Ross MI. Intralesional therapy with PV-10 (Rose Bengal) for in-transit melanoma. J Surg Oncol. 2014;109(4):314–9.

    Article  PubMed  Google Scholar 

  48. Hersey P, Gallagher S. Intralesional immunotherapy for melanoma. J Surg Oncol. 2014;109(4):320–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors would like to thank the institutions across Ontario who helped provide paraffin-embedded blocks for this study, including University Health Network, Barrie Royal Victoria Hospital, Muskoka Algonquin Healthcare, Headwaters Health, Orillia Soldier’s Memorial Hospital, West Parry Sound Health Centre, Lifelabs, Gamma Dynacare, Windsor Regional Hospital, Ross Memorial Hospital, Peterborough Regional Health Centre, London Health Sciences Centre, St. Mary’s General Hospital, Kitchener, Kingston General Hospital, and Grand River Hospital. This study was supported by the William S. Fenwick Fellowship and the Joseph M. West Family Memorial Fund from the 2012 Postgraduate Medical Research Award, awarded to Saima Hassan, University of Toronto; Melanoma Site Group from Sunnybrook Health Sciences Centre, awarded to Teresa Petrella; and a Research Grant from Pathology Associates from the University Health Network, awarded to Danny Ghazarian.

Disclosure

Novartis provided interleukin-2 to patients free of charge as part of a compassionate release program. Novartis was not involved in funding this research study. Teresa Petrella and an immediate family member received honoraria from Novartis, Roche, BMS, Merck, GSK, Amgen, AstraZeneca, Electa, Janssen, Paladin, and Sanofi; they served as a consultant or in an advisory role for Novartis, Roche, BMS, Merck, GSK, Amgen, Astellas, Janssen, and Sanofi. An immediate family member of Teresa Petrella was paid to speak at a speaker’s bureau from Amgen, and has received research funding from Sanofi and Paladin. The University Health Network, Toronto, ON, Canada, where Suzanne Kamel-Reid is an employee, receives research funding from Novartis. Saima Hassan, Tong Zhang, Francesco Nordio, Andrea Baccarelli, Shachar Sade, Karen Naert, Ayman Al Habeeb, Danny Ghazarian, and Frances Wright have nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frances C. Wright MD, MEd, FRCSC.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, S., Petrella, T.M., Zhang, T. et al. Pathologic Complete Response to Intralesional Interleukin-2 Therapy Associated with Improved Survival in Melanoma Patients with In-Transit Disease. Ann Surg Oncol 22, 1950–1958 (2015). https://doi.org/10.1245/s10434-014-4199-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-014-4199-z

Keywords

Navigation