Skip to main content

Advertisement

Log in

The 2013 Society of Surgical Oncology Susan G. Komen for the Cure Symposium: MRI in Breast Cancer: Where Are We Now?

  • Breast Oncology
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Magnetic resonance imaging (MRI) has been widely applied in the contemporary management of patients with breast cancer and as a screening tool for those at increased risk; however, prospective evidence that the use of breast MRI improves patient outcomes remains limited to screening of known BRCA mutation carriers or women at increased risk based on a strong family history. Despite this, the role of MRI in the routine evaluation of the newly diagnosed breast cancer patient remains a subject of much debate, with widely divergent views on the value of MRI in selecting local therapy. The application of MRI in patients undergoing neoadjuvant therapy is an area of active investigation, with several potential benefits, including predicting response to therapy. We review the current state of the literature on the topics of MRI for screening, MRI and short-term surgical outcomes, MRI and long-term surgical outcomes, and MRI and neoadjuvant chemotherapy as presented at the 2013 Society of Surgical Oncology Susan G. Komen for the Cure Symposium, 9 March 2013.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bleyer A, Welch HG. Effect of three decades of screening mammography on breast-cancer incidence. N Engl J Med. 2012;367(21):1998–2005.

    Article  CAS  PubMed  Google Scholar 

  2. Warner E, Messersmith H, Causer P, et al. Systematic review: using magnetic resonance imaging to screen women at high risk for breast cancer. Ann Intern Med. 2008;148(9):671–9.

    Article  PubMed  Google Scholar 

  3. Saslow D, Boetes C, Burke W, et al. American Cancer Society guidelines for breast screening with MRI as an adjunct to mammography. CA Cancer J Clin. 2007;57(2):75–89.

    Article  PubMed  Google Scholar 

  4. Passaperuma K, Warner E, Causer PA, et al. Long-term results of screening with magnetic resonance imaging in women with BRCA mutations. Br J Cancer. 2012;107(1):24–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Freitas V, Scaranelo A, Menezes R, et al. Added cancer yield of breast magnetic resonance imaging screening in women with a prior history of chest radiation therapy. Cancer. 2013;119(3):495–503.

    Article  PubMed  Google Scholar 

  6. Sung JS, Dershaw DD. Breast magnetic resonance imaging for screening high-risk women. Magn Reson Imaging Clin N Am. 2013;21(3):509–17.

    Article  PubMed  Google Scholar 

  7. Ozanne EM, Drohan B, Bosinoff P, et al. Which risk model to use? Clinical implications of the ACS MRI screening guidelines. Cancer Epidemiol Biomarkers Prev. 2013;22(1):146–9.

    Article  PubMed  Google Scholar 

  8. Brennan ME, Houssami N, Lord S, et al. Magnetic resonance imaging screening of the contralateral breast in women with newly diagnosed breast cancer: systematic review and meta-analysis of incremental cancer detection and impact on surgical management. J Clin Oncol. 2009;27(33):5640–9.

    Article  PubMed  Google Scholar 

  9. Friedlander LC, Roth SO, Gavenonis SC. Results of MR imaging screening for breast cancer in high-risk patients with lobular carcinoma in situ. Radiology. 2011;261(2):421–7.

    Article  PubMed  Google Scholar 

  10. Port ER, Park A, Borgen PI, et al. Results of MRI screening for breast cancer in high-risk patients with LCIS and atypical hyperplasia. Ann Surg Oncol. 2007;14(3):1051–7.

    Article  PubMed  Google Scholar 

  11. Sung JS, Malak SF, Bajaj P, et al. Screening breast MR imaging in women with a history of lobular carcinoma in situ. Radiology. 2011;261(2):414–20.

    Article  PubMed  Google Scholar 

  12. Yu J, Park A, Morris E, et al. MRI screening in a clinic population with a family history of breast cancer. Ann Surg Oncol. 2008;15(2):452–61.

    Article  PubMed  Google Scholar 

  13. Bevers TB, Anderson BO, Bonaccio E, et al. National Comprehensive Cancer Network (NCCN) clinical practice guidelines in oncology: breast cancer screening and diagnosis. J Natl Compr Canc Netw. 2009;7(10):1060–96.

    PubMed  Google Scholar 

  14. Heijnsdijk EA, Warner E, Gilbert FJ, et al. Differences in natural history between breast cancers in BRCA1 and BRCA2 mutation carriers and effects of MRI screening-MRISC, MARIBS, and Canadian studies combined. Cancer Epidemiol Biomarkers Prev. 2012;21(9):1458–68.

    Article  PubMed  Google Scholar 

  15. Masciari S, Dillon DA, Rath M, et al. Breast cancer phenotype in women with TP53 germline mutations: a Li–Fraumeni Syndrome Consortium effort. Breast Cancer Res Treat. 2012;133(3):1125–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Riegert-Johnson DL, Gleeson FC, Roberts M, et al. Cancer and Lhermitte–Duclos disease are common in Cowden syndrome patients. Hered Cancer Clin Pract. 2010;8(1):6.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Cott Chubiz JE, Lee JM, Gilmore ME, et al. Cost-effectiveness of alternating magnetic resonance imaging and digital mammography screening in BRCA1 and BRCA2 gene mutation carriers. Cancer. 2013;119(6):1266–76.

    Article  PubMed  Google Scholar 

  18. Lowry KP, Lee JM, Kong CY, et al. Annual screening strategies in BRCA1 and BRCA2 gene mutation carriers: a comparative effectiveness analysis. Cancer. 2012;118(8):2021–30.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Bleicher RJ, Ciocca RM, Egleston BL, et al. Association of routine pretreatment magnetic resonance imaging with time to surgery, mastectomy rate, and margin status. J Am Coll Surg. 2009;209(2):180–7; quiz 294–5.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Carpenter SG, Stucky CC, Dueck AC, et al. Scientific Presentation Award: the impact of magnetic resonance imaging on surgical treatment of invasive breast cancer. Am J Surg. 2009;198(4):475–81.

    Article  PubMed  Google Scholar 

  21. Katipamula R, Degnim AC, Hoskin T, et al. Trends in mastectomy rates at the Mayo Clinic Rochester: effect of surgical year and preoperative magnetic resonance imaging. J Clin Oncol. 2009;27(25):4082–8.

    Article  PubMed  Google Scholar 

  22. Houssami N, Hayes DF. Review of preoperative magnetic resonance imaging (MRI) in breast cancer: should MRI be performed on all women with newly diagnosed, early stage breast cancer? CA Cancer J Clin. 2009;59(5):290–302.

    Article  PubMed  Google Scholar 

  23. Boetes C, Veltman J, van Die L, et al. The role of MRI in invasive lobular carcinoma. Breast Cancer Res Treat. 2004;86(1):31–7.

    Article  PubMed  Google Scholar 

  24. Bazzocchi M, Zuiani C, Panizza P, et al. Contrast-enhanced breast MRI in patients with suspicious microcalcifications on mammography: results of a multicenter trial. Am J Roentgenol. 2006;186(6):1723–32.

    Article  Google Scholar 

  25. Caramella T, Chapellier C, Ettore F, et al. Value of MRI in the surgical planning of invasive lobular breast carcinoma: a prospective and a retrospective study of 57 cases: comparison with physical examination, conventional imaging, and histology. Clin Imaging. 2007;31(3):155–61.

    Article  PubMed  Google Scholar 

  26. Davis PL, Staiger MJ, Harris KB, et al. Breast cancer measurements with magnetic resonance imaging, ultrasonography, and mammography. Breast Cancer Res Treat. 1996;37(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  27. Mann RM, Hoogeveen YL, Blickman JG, et al. MRI compared to conventional diagnostic work-up in the detection and evaluation of invasive lobular carcinoma of the breast: a review of existing literature. Breast Cancer Res Treat. 2008;107(1):1–14.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Munot K, Dall B, Achuthan R, et al. Role of magnetic resonance imaging in the diagnosis and single-stage surgical resection of invasive lobular carcinoma of the breast. Br J Surg. 2002;89(10):1296–301.

    Article  CAS  PubMed  Google Scholar 

  29. Rosen EL, Blackwell KL, Baker JA, et al. Accuracy of MRI in the detection of residual breast cancer after neoadjuvant chemotherapy. Am J Roentgenol. 2003;181(5):1275–82.

    Article  Google Scholar 

  30. Turnbull L, Brown S, Harvey I, et al. Comparative effectiveness of MRI in breast cancer (COMICE) trial: a randomised controlled trial. Lancet. 2010;375(9714):563–71.

    Article  PubMed  Google Scholar 

  31. Behjatnia B, Sim J, Bassett LW, et al. Does size matter? Comparison study between MRI, gross, and microscopic tumor sizes in breast cancer in lumpectomy specimens. Int J Clin Exp Pathol. 2010;3(3):303–9.

    PubMed Central  PubMed  Google Scholar 

  32. do Kim Y, Moon WK, Cho N, et al. MRI of the breast for the detection and assessment of the size of ductal carcinoma in situ. Korean J Radiol. 2007;8(1):32–9.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Hwang N, Schiller DE, Crystal P, et al. Magnetic resonance imaging in the planning of initial lumpectomy for invasive breast carcinoma: its effect on ipsilateral breast tumor recurrence after breast-conservation therapy. Ann Surg Oncol. 2009;16(11):3000–9.

    Article  PubMed  Google Scholar 

  34. Solin LJ, Orel SG, Hwang WT, et al. Relationship of breast magnetic resonance imaging to outcome after breast-conservation treatment with radiation for women with early-stage invasive breast carcinoma or ductal carcinoma in situ. J Clin Oncol. 2008;26(3):386–91.

    Article  PubMed  Google Scholar 

  35. Peters NH, van Esser S, van den Bosch MA, et al. Preoperative MRI and surgical management in patients with nonpalpable breast cancer: the MONET—randomised controlled trial. Eur J Cancer. 2011;47(6):879–86.

    Article  CAS  PubMed  Google Scholar 

  36. Kapoor NS, Eaton A, King TA, et al. Should breast density influence patient selection for breast-conserving surgery? Ann Surg Oncol. 2013;20(2):600–6.

    Article  PubMed  Google Scholar 

  37. Pengel KE, Loo CE, Teertstra HJ, et al. The impact of preoperative MRI on breast-conserving surgery of invasive cancer: a comparative cohort study. Breast Cancer Res Treat. 2009;116(1):161–9.

    Article  CAS  PubMed  Google Scholar 

  38. Shin HC, Han W, Moon HG, et al. Limited value and utility of breast MRI in patients undergoing breast-conserving cancer surgery. Ann Surg Oncol. 2012;19(8):2572–9.

    Article  PubMed  Google Scholar 

  39. Houssami N, Turner R, Morrow M. Preoperative magnetic resonance imaging in breast cancer: meta-analysis of surgical outcomes. Ann Surg. 2013;257(2):249–55.

    Article  PubMed  Google Scholar 

  40. Davis KL, Barth RJ Jr, Gui J, et al. Use of MRI in preoperative planning for women with newly diagnosed DCIS: risk or benefit? Ann Surg Oncol. 2012;19(10):3270–4.

    Article  PubMed  Google Scholar 

  41. Miller BT, Abbott AM, Tuttle TM. The influence of preoperative MRI on breast cancer treatment. Ann Surg Oncol. 2012;19(2):536–40.

    Article  PubMed  Google Scholar 

  42. Lehman CD, Gatsonis C, Kuhl CK, et al. MRI evaluation of the contralateral breast in women with recently diagnosed breast cancer. N Engl J Med. 2007;356(13):1295–303.

    Article  CAS  PubMed  Google Scholar 

  43. Plevritis SK, Kurian AW, Sigal BM, et al. Cost-effectiveness of screening BRCA1/2 mutation carriers with breast magnetic resonance imaging. JAMA. 2006;295(20):2374–84.

    Article  CAS  PubMed  Google Scholar 

  44. Dogan L, Gulcelik MA, Yuksel M, et al. Wire-guided localization biopsy to determine surgical margin status in patients with non-palpable suspicious breast lesions. Asian Pac J Cancer Prev. 2012;13(10):4989–92.

    Article  PubMed  Google Scholar 

  45. Liberman L, Kaplan J, Van Zee KJ, et al. Bracketing wires for preoperative breast needle localization. Am J Roentgenol. 2001;177(3):565–72.

    Article  CAS  Google Scholar 

  46. Burkholder HC, Witherspoon LE, Burns RP, et al. Breast surgery techniques: preoperative bracketing wire localization by surgeons. Am Surg. 2007;73(6):574–8; discussion 8–9.

    PubMed  Google Scholar 

  47. Cordiner CM, Litherland JC, Young IE. Does the insertion of more than one wire allow successful excision of large clusters of malignant calcification? Clin Radiol. 2006;61(8):686–90.

    Article  CAS  PubMed  Google Scholar 

  48. Fillion MM, Black EA, Hudson KB, et al. The effect of multiple wire localization in breast conservation. Am Surg. 2012;78(5):519–22.

    PubMed  Google Scholar 

  49. Kirstein LJ, Rafferty E, Specht MC, et al. Outcomes of multiple wire localization for larger breast cancers: when can mastectomy be avoided? J Am Coll Surg. 2008;207(3):342–6.

    Article  PubMed  Google Scholar 

  50. Atkins J, Al Mushawah F, Appleton CM, et al. Positive margin rates following breast-conserving surgery for stage I–III breast cancer: palpable versus nonpalpable tumors. J Surg Res. 2012;177(1):109–15.

    Article  PubMed  Google Scholar 

  51. Wallace AM, Daniel BL, Jeffrey SS, et al. Rates of reexcision for breast cancer after magnetic resonance imaging-guided bracket wire localization. J Am Coll Surg. 2005;200(4):527–37.

    Article  PubMed  Google Scholar 

  52. Kuhl CK, Schrading S, Bieling HB, et al. MRI for diagnosis of pure ductal carcinoma in situ: a prospective observational study. Lancet. 2007;370(9586):485–92.

    Article  PubMed  Google Scholar 

  53. Fischer U, Zachariae O, Baum F, et al. The influence of preoperative MRI of the breasts on recurrence rate in patients with breast cancer. Eur Radiol. 2004;14(10):1725–31.

    Article  PubMed  Google Scholar 

  54. Turnbull LW, Brown SR, Olivier C, et al. Multicentre randomised controlled trial examining the cost-effectiveness of contrast-enhanced high field magnetic resonance imaging in women with primary breast cancer scheduled for wide local excision (COMICE). Health Technol Assess. 2010;14(1):1–182.

    CAS  PubMed  Google Scholar 

  55. Pilewskie M, Olcese C, Eaton A, et al. Perioperative breast MRI is not associated with lower local recurrence rates in ductal carcinoma in situ patients treated with or without radiation. Ann Surg Oncol. 2013;20:S60.

    Article  Google Scholar 

  56. Holland R, Veling SH, Mravunac M, et al. Histologic multifocality of Tis, T1–2 breast carcinomas. Implications for clinical trials of breast-conserving surgery. Cancer. 1985;56(5):979–90.

    Article  CAS  PubMed  Google Scholar 

  57. Russo AL, Arvold ND, Niemierko A, et al. Margin status and the risk of local recurrence in patients with early-stage breast cancer treated with breast-conserving therapy. Breast Cancer Res Treat. 2013;140(2):353–61.

    Article  CAS  PubMed  Google Scholar 

  58. van Laar C, van der Sangen MJ, Poortmans PM, et al. Local recurrence following breast-conserving treatment in women aged 40 years or younger: trends in risk and the impact on prognosis in a population-based cohort of 1143 patients. Eur J Cancer. 2013;15:3093–101.

    Google Scholar 

  59. Hollingsworth AB, Stough RG. Multicentric and contralateral invasive tumors identified with pre-op MRI in patients newly diagnosed with ductal carcinoma in situ of the breast. Breast J. 2012;18(5):420–7.

    Article  PubMed  Google Scholar 

  60. Kim JY, Cho N, Koo HR, et al. Unilateral breast cancer: screening of contralateral breast by using preoperative MR imaging reduces incidence of metachronous cancer. Radiology. 2013;267(1):57–66.

    Article  PubMed  Google Scholar 

  61. Nichols HB, Berrington de Gonzalez A, Lacey JV Jr, et al. Declining incidence of contralateral breast cancer in the United States from 1975 to 2006. J Clin Oncol. 2011;29(12):1564–9.

    Article  PubMed  Google Scholar 

  62. Clarke M, Collins R, Darby S, et al. Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet. 2005;366(9503):2087–106.

    CAS  PubMed  Google Scholar 

  63. Esserman LJ, Berry DA, DeMichele A, et al. Pathologic complete response predicts recurrence-free survival more effectively by cancer subset: results from the I-SPY 1 TRIAL—CALGB 150007/150012, ACRIN 6657. J Clin Oncol. 2012;30(26):3242–9.

    Article  PubMed  Google Scholar 

  64. Hylton NM, Blume JD, Bernreuter WK, et al. Locally advanced breast cancer: MR imaging for prediction of response to neoadjuvant chemotherapy—results from ACRIN 6657/I-SPY TRIAL. Radiology. 2012;263(3):663–72.

    Article  PubMed  Google Scholar 

  65. Marinovich ML, Houssami N, Macaskill P, et al. Meta-analysis of magnetic resonance imaging in detecting residual breast cancer after neoadjuvant therapy. J Natl Cancer Inst. 2013;105(5):321–33.

    Article  CAS  PubMed  Google Scholar 

  66. De Los Santos JF, Cantor A, Amos KD, et al. Magnetic resonance imaging as a predictor of pathologic response in patients treated with neoadjuvant systemic treatment for operable breast cancer: Translational Breast Cancer Research Consortium trial 017. Cancer. 2013;119(10):1776–83.

    Article  PubMed  Google Scholar 

  67. Buzdar AU, Ibrahim NK, Francis D, et al. Significantly higher pathologic complete remission rate after neoadjuvant therapy with trastuzumab, paclitaxel, and epirubicin chemotherapy: results of a randomized trial in human epidermal growth factor receptor 2-positive operable breast cancer. J Clin Oncol. 2005;23(16):3676–85.

    Article  CAS  PubMed  Google Scholar 

  68. Gianni L, Eiermann W, Semiglazov V, et al. Neoadjuvant chemotherapy with trastuzumab followed by adjuvant trastuzumab versus neoadjuvant chemotherapy alone, in patients with HER2-positive locally advanced breast cancer (the NOAH trial): a randomised controlled superiority trial with a parallel HER2-negative cohort. Lancet. 2010;375(9712):377–84.

    Article  CAS  PubMed  Google Scholar 

  69. Guarneri V, Broglio K, Kau SW, et al. Prognostic value of pathologic complete response after primary chemotherapy in relation to hormone receptor status and other factors. J Clin Oncol. 2006;24(7):1037–44.

    Article  PubMed  Google Scholar 

  70. Untch M, Rezai M, Loibl S, et al. Neoadjuvant treatment with trastuzumab in HER2-positive breast cancer: results from the GeparQuattro study. J Clin Oncol. 2010;28(12):2024–31.

    Article  CAS  PubMed  Google Scholar 

  71. Koh DM, Collins DJ, Orton MR. Intravoxel incoherent motion in body diffusion-weighted MRI: reality and challenges. Am J Roentgenol. 2011;196(6):1351–61.

    Article  Google Scholar 

  72. Barker AD, Sigman CC, Kelloff GJ, et al. I-SPY 2: an adaptive breast cancer trial design in the setting of neoadjuvant chemotherapy. Clin Pharmacol Ther. 2009;86(1):97–100.

    Article  CAS  PubMed  Google Scholar 

  73. Hylton N, Partridge S, Rosen M, et al. Diffusion weighted MR imaging biomarkers for assessment of breast cancer response to neoadjuvant treatment: a sub-study of the I-SPY 2 TRIAL (Investigation of Serial Studies to Predict Your Therapeutic Response with Imaging And moLecular Analysis). ACRIN 6698. American College of Radiology Imaging Network. http://www.acrin.org/TabID/825/Default.aspx (29 Feb 2012). Accessed 19 June 2013.

  74. Partridge SC, Gibbs JE, Lu Y, et al. MRI measurements of breast tumor volume predict response to neoadjuvant chemotherapy and recurrence-free survival. Am J Roentgenol. 2005;184(6):1774–81.

    Article  Google Scholar 

  75. Balu-Maestro C, Chapellier C, Bleuse A, et al. Imaging in evaluation of response to neoadjuvant breast cancer treatment benefits of MRI. Breast Cancer Res Treat. 2002;72(2):145–52.

    Article  CAS  PubMed  Google Scholar 

  76. Yeh E, Slanetz P, Kopans DB, et al. Prospective comparison of mammography, sonography, and MRI in patients undergoing neoadjuvant chemotherapy for palpable breast cancer. Am J Roentgenol. 2005;184(3):868–77.

    Article  Google Scholar 

  77. Julius T, Kemp SE, Kneeshaw PJ, et al. MRI and conservative treatment of locally advanced breast cancer. Eur J Surg Oncol. 2005;31(10):1129–34.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tari A. King MD.

Additional information

Sarah McLaughlin, Elizabeth A. Mittendorf, Richard J. Bleicher, and David R. McCready share first authorship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McLaughlin, S., Mittendorf, E.A., Bleicher, R.J. et al. The 2013 Society of Surgical Oncology Susan G. Komen for the Cure Symposium: MRI in Breast Cancer: Where Are We Now?. Ann Surg Oncol 21, 28–36 (2014). https://doi.org/10.1245/s10434-013-3307-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-013-3307-9

Keywords

Navigation