Skip to main content

Advertisement

Log in

Preparation, Characterization, and In Vitro Pharmacodynamics and Pharmacokinetics Evaluation of PEGylated Urolithin A Liposomes

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Urolithin A (Uro-A), a metabolite of ellagitannins in mammals’ intestinal tract, displays broad biological properties in preclinical models, including anti-oxidant, anti-inflammatory, and anti-tumor effects. However, the clinical application of Uro-A is restricted because of its low aqueous solubility and short elimination half-life. Our purpose was to develop a delivery system to improve the bioavailability and anti-tumor efficacy of Uro-A. To achieve this goal, urolithin A–loaded PEGylated liposomes (Uro-A-PEG-LPs) were prepared for the first time and its physicochemical properties and anti-tumor efficacy in vitro were evaluated. The morphology of Uro-A-PEG-LPs displayed a uniform sphere under transmission electron microscope. The particle size, polydispersity index, zeta potential, and encapsulation efficiency of Uro-A-PEG-LPs were 122.8 ± 7.4 nm, 0.25 ± 0.16, − 25.5 ± 2.3 mV, and 94.6 ± 1.6%, respectively. Moreover, Uro-A-PEG-LPs possessed higher stability and could be stably stored at 4°C for a long time. In vitro release characteristics indicated that Uro-A-PEG-LPs possessed superior sustained release properties. The results of confocal laser scanning microscopy experiment showed that the coumarin 6–loaded PEGylated liposomes (C6-PEG-LPs) have superior cellular uptake than that of conventional liposomes. In addition, in vitro tests demonstrated that Uro-A-PEG-LPs elevated cytotoxicity and pro-apoptotic effect in human hepatoma cells comparing with free Uro-A. Furthermore, the results of pharmacokinetic experiments showed that the t1/2, AUC0-t, and MRT0-t of Uro-A-PEG-LPs increased to 4.58-fold, 2.33-fold, and 2.43-fold than those of free Uro-A solution, respectively. Collectively, these manifested that PEGylated liposomes might be a potential delivery system for Uro-A to prolonging in vivo circulation time, promoting cellular uptake, and enhancing its anti-tumor efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AUC:

Area under the curve

Chol:

Cholesterol

CL:

Plasma clearance

CCK-8:

Cell Counting Kit-8

CLSM:

Confocal laser scanning microscopy

C6:

Coumarin 6

Uro-A:

Urolithin A

Cmax :

Maximum concentration

DSPE-mPEG2000:

1,2-Distearoyl-sn-Glycero-3-Phosphoethanolamine (DSPE)–conjugated Polyethylene Glycol 2000

EE:

Encapsulation efficiency

HPLC:

High-performance liquid chromatography

IC50 :

Half-inhibitory concentration

MRT:

Mean residential time

PDI:

Polydispersity index

PEG:

Polyethylene glycol

R:

Range values

SD:

Sprague Dawley

SPC:

Soy phosphatidylcholine

TEM:

Transmission electron microscope

t1/2 :

Half-life time

Uro-A-LPs:

Urolithin A–loaded liposomes

Uro-A-PEG-LPs:

Urolithin A–loaded PEGylated liposomes

References

  1. Larrosa M, Tomas-Barberan FA, Espin JC. The dietary hydrolysable tannin punicalagin releases ellagic acid that induces apoptosis in human colon adenocarcinoma Caco-2 cells by using the mitochondrial pathway. J Nutr Biochem. 2006;17(9):611–25.

    Article  CAS  PubMed  Google Scholar 

  2. Park SH, Kim JL, Lee ES, Han SY, Gong JH, Kang MK, et al. Dietary ellagic acid attenuates oxidized LDL uptake and stimulates cholesterol efflux in murine macrophages. J Nutr. 2011;141(11):1931–7.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang YJ, Gan RY, Li S, Zhou Y, Li AN, Xu DP, et al. Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules. 2015;20(12):21138–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bialonska D, Kasimsetty SG, Khan SI, Ferreira D. Urolithins, intestinal microbial metabolites of pomegranate ellagitannins, exhibit potent antioxidant activity in a cell-based assay. J Agric Food Chem. 2009;57(21):10181–6.

    Article  CAS  PubMed  Google Scholar 

  5. Espin JC, Gonzalez-Barrio R, Cerda B, Lopez-Bote C, Rey AI, Tomas-Barberan FA. Iberian pig as a model to clarify obscure points in the bioavailability and metabolism of ellagitannins in humans. J Agric Food Chem. 2007;55(25):10476–85.

    Article  CAS  PubMed  Google Scholar 

  6. Tomas-Barberan FA, Gonzalez-Sarrias A, Garcia-Villalba R, Nunez-Sanchez MA, Selma MV, Garcia-Conesa MT, et al. Urolithins, the rescue of “old” metabolites to understand a “new” concept: metabotypes as a nexus among phenolic metabolism, microbiota dysbiosis, and host health status. Mol Nutr Food Res. 2017;61(1–35).

  7. Espin JC, Larrosa M, Garcia-Conesa MT, Tomas-Barberan F. Biological significance of urolithins, the gut microbial ellagic acid-derived metabolites: the evidence so far. Evid Based Complement Alternat Med. 2013;2013:270418.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhou BH, Qiu ZP, Yi HL, Zhou DS, Wang J, Wu Y. Research progress of ellagitannin intestinal metabolite urolithins. Zhongguo Zhong Yao Za Zhi. 2016;41(16):2968–74.

    PubMed  Google Scholar 

  9. Sharma M, Li L, Celver J, Killian C, Kovoor A, Seeram NP. Effects of fruit ellagitannin extracts, ellagic acid, and their colonic metabolite, urolithin A, on Wnt signaling. J Agric Food Chem. 2010;58(7):3965–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Qiu Z, Zhou B, Jin L, Yu H, Liu L, Liu Y, et al. In vitro antioxidant and antiproliferative effects of ellagic acid and its colonic metabolite, urolithins, on human bladder cancer T24 cells. Food Chem Toxicol. 2013;59:428–37.

    Article  CAS  PubMed  Google Scholar 

  11. Wang Y, Qiu Z, Zhou B, Liu C, Ruan J, Yan Q, et al. In vitro antiproliferative and antioxidant effects of urolithin A, the colonic metabolite of ellagic acid, on hepatocellular carcinomas HepG2 cells. Toxicol in Vitro. 2015;29(5):1107–15.

    Article  CAS  PubMed  Google Scholar 

  12. Zhou B, Wang J, Zheng G, Qiu Z. Methylated urolithin A, the modified ellagitannin-derived metabolite, suppresses cell viability of DU145 human prostate cancer cells via targeting miR-21. Food Chem Toxicol. 2016;97:375–84.

    Article  CAS  PubMed  Google Scholar 

  13. Cerda B, Periago P, Espin JC, Tomas-Barberan FA. Identification of urolithin a as a metabolite produced by human colon microflora from ellagic acid and related compounds. J Agric Food Chem. 2005;53(14):5571–6.

    Article  CAS  PubMed  Google Scholar 

  14. Tomas-Barberan FA, Garcia-Villalba R, Gonzalez-Sarrias A, Selma MV, Espin JC. Ellagic acid metabolism by human gut microbiota: consistent observation of three urolithin phenotypes in intervention trials, independent of food source, age, and health status. J Agric Food Chem. 2014;62(28):6535–8.

    Article  CAS  PubMed  Google Scholar 

  15. Heilman J, Andreux P, Tran N, Rinsch C, Blanco-Bose W. Safety assessment of Urolithin A, a metabolite produced by the human gut microbiota upon dietary intake of plant derived ellagitannins and ellagic acid. Food Chem Toxicol. 2017;108:289–97.

    Article  CAS  PubMed  Google Scholar 

  16. Hetal T, Bindesh P, Sneha T. A review on techniques for oral bioavailability enhancement of drugs. Health. 2010;4(3):033.

    Google Scholar 

  17. Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005;4(2):145–60.

    Article  CAS  PubMed  Google Scholar 

  18. Pattni BS, Chupin VV, Torchilin VP. New developments in liposomal drug delivery. Chem Rev. 2015;115(19):10938–66.

    Article  CAS  PubMed  Google Scholar 

  19. Rizvi SA, Saleh AM. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm J. 2018;26(1):64–70.

    Article  PubMed  Google Scholar 

  20. Allen TM. Liposomal drug delivery. Curr Opin Colloid Interface Sci. 1996;1(5):645–51.

    Article  CAS  Google Scholar 

  21. Cattel L, Ceruti M, Dosio F. From conventional to stealth liposomes a new frontier in cancer chemotherapy. Tumori J. 2003;89(3):237–49.

    Article  CAS  Google Scholar 

  22. Moghimi SM, Patel H. Serum-mediated recognition of liposomes by phagocytic cells of the reticuloendothelial system–the concept of tissue specificity. Adv Drug Deliv Rev. 1998;32(1–2):45–60.

    Article  CAS  PubMed  Google Scholar 

  23. Veronese FM, Pasut G. PEGylation, successful approach to drug delivery. Drug Discov Today. 2005;10(21):1451–8.

    Article  CAS  PubMed  Google Scholar 

  24. Moghimi SM, Szebeni J. Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog Lipid Res. 2003;42(6):463–78.

    Article  CAS  PubMed  Google Scholar 

  25. Klibanov AL, Maruyama K, Torchilin VP, Huang L. Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett. 1990;268(1):235–7.

    Article  CAS  PubMed  Google Scholar 

  26. Madrigal-Carballo S, Lim S, Rodriguez G, Vila AO, Krueger CG, Gunasekaran S, et al. Biopolymer coating of soybean lecithin liposomes via layer-by-layer self-assembly as novel delivery system for ellagic acid. J Funct Foods. 2010;2(2):99–106.

    Article  CAS  Google Scholar 

  27. Wallace SJ, Li J, Nation RL, Boyd BJ. Drug release from nanomedicines: selection of appropriate encapsulation and release methodology. Drug Deliv Transl Res. 2012;2(4):284–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhou J, Zhang C, Zheng G-H, Qiu Z. Emblic leafflower (Phyllanthus emblica L.) fruits ameliorate vascular smooth muscle cell dysfunction in hyperglycemia: an underlying mechanism involved in ellagitannin metabolite urolithin A. Evid Based Complement Alternat Med. 2018;2018:8478943.

  29. Chen Y, Minh LV, Liu J, Angelov B, Drechsler M, Garamus VM, et al. Baicalin loaded in folate-PEG modified liposomes for enhanced stability and tumor targeting. Colloids Surf B: Biointerfaces. 2016;140:74–82.

    Article  CAS  PubMed  Google Scholar 

  30. Chen X, Zhang Y, Tang C, Tian C, Sun Q, Su Z, et al. Co-delivery of paclitaxel and anti-survivin siRNA via redox-sensitive oligopeptide liposomes for the synergistic treatment of breast cancer and metastasis. Int J Pharm. 2017;529(1–2):102–15.

    Article  CAS  PubMed  Google Scholar 

  31. Mo L, Song JG, Lee H, Zhao M, Kim HY, Lee YJ, et al. PEGylated hyaluronic acid-coated liposome for enhanced in vivo efficacy of sorafenib via active tumor cell targeting and prolonged systemic exposure. Nanomedicine. 2018;14(2):557–67.

    Article  CAS  PubMed  Google Scholar 

  32. Muthu MS, Kulkarni SA, Xiong J, Feng SS. Vitamin E TPGS coated liposomes enhanced cellular uptake and cytotoxicity of docetaxel in brain cancer cells. Int J Pharm. 2011;421(2):332–40.

    Article  CAS  PubMed  Google Scholar 

  33. Chen X, Hu X, Hu J, Qiu Z, Yuan M, Zheng G. Celastrol-loaded galactosylated liposomes effectively inhibit AKT/c-met-triggered rapid hepatocarcinogenesis in mice. Mol Pharm. 2020;17(3):738–47.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang Y, Huo M, Zhou J, Xie S. PKSolver: an add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft excel. Comput Methods Prog Biomed. 2010;99(3):306–14.

    Article  Google Scholar 

  35. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013;8(1):102.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Garbuzenko O, Barenholz Y, Priev A. Effect of grafted PEG on liposome size and on compressibility and packing of lipid bilayer. Chem Phys Lipids. 2005;135(2):117–29.

    Article  CAS  PubMed  Google Scholar 

  37. Tang X, Sun J, Ge T, Zhang K, Gui Q, Zhang S, et al. PEGylated liposomes as delivery systems for Gambogenic acid: characterization and in vitro/in vivo evaluation. Colloids Surf B: Biointerfaces. 2018;172:26–36.

    Article  CAS  PubMed  Google Scholar 

  38. Roger E, Lagarce F, Garcion E, Benoit J-P. Biopharmaceutical parameters to consider in order to alter the fate of nanocarriers after oral delivery. Nanomedicine. 2010;5(2):287–306.

    Article  CAS  PubMed  Google Scholar 

  39. Isacchi B, Bergonzi MC, Iacopi R, Ghelardini C, Galeotti N, Bilia AR. Liposomal formulation to increase stability and prolong antineuropathic activity of verbascoside. Planta Med. 2017;83(05):412–9.

    CAS  PubMed  Google Scholar 

  40. Frenzel M, Steffen-Heins A. Impact of quercetin and fish oil encapsulation on bilayer membrane and oxidation stability of liposomes. Food Chem. 2015;185:48–57.

    Article  CAS  PubMed  Google Scholar 

  41. Yang T, Cui F-D, Choi M-K, Cho J-W, Chung S-J, Shim C-K, et al. Enhanced solubility and stability of PEGylated liposomal paclitaxel: in vitro and in vivo evaluation. Int J Pharm. 2007;338(1–2):317–26.

    Article  CAS  PubMed  Google Scholar 

  42. Tiwari G, Tiwari R, Sriwastawa B, Bhati L, Pandey S, Pandey P, et al. Drug delivery systems: an updated review. Int J Pharm Investig. 2012;2(1):2–11.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Needham D, Kim DH. PEG-covered lipid surfaces: bilayers and monolayers. Colloids Surf B: Biointerfaces. 2000;18(3–4):183–95.

    Article  CAS  PubMed  Google Scholar 

  44. Fang T, Dong Y, Zhang X, Xie K, Lin L, Wang H. Integrating a novel SN38 prodrug into the PEGylated liposomal system as a robust platform for efficient cancer therapy in solid tumors. Int J Pharm. 2016;512(1):39–48.

    Article  CAS  PubMed  Google Scholar 

  45. Sadzuka Y, Kishi K, Hirota S, Sonobe T. Effect of polyethyleneglycol (PEG) chain on cell uptake of PEG-modified liposomes. J Liposome Res. 2003;13(2):157–72.

    Article  CAS  PubMed  Google Scholar 

  46. Chithrani DB. Intracellular uptake, transport, and processing of gold nanostructures. Mol Membr Biol. 2010;27(7):299–311.

    Article  CAS  PubMed  Google Scholar 

  47. Manconi M, Isola R, Falchi AM, Sinico C, Fadda AM. Intracellular distribution of fluorescent probes delivered by vesicles of different lipidic composition. Colloids Surf B: Biointerfaces. 2007;57(2):143–51.

    Article  CAS  PubMed  Google Scholar 

  48. Palchetti S, Colapicchioni V, Digiacomo L, Caracciolo G, Pozzi D, Capriotti AL, et al. The protein corona of circulating PEGylated liposomes. Biochim Biophys Acta. 2016;1858(2):189–96.

    Article  CAS  PubMed  Google Scholar 

  49. Arcella A, Palchetti S, Digiacomo L, Pozzi D, Capriotti AL, Frati L, et al. Brain targeting by liposome-biomolecular corona boosts anticancer efficacy of temozolomide in glioblastoma cells. ACS Chem Neurosci. 2018;9(12):3166–74.

    Article  CAS  PubMed  Google Scholar 

  50. Caracciolo G. Clinically approved liposomal nanomedicines: lessons learned from the biomolecular corona. Nanoscale. 2018;10(9):4167–72.

    Article  CAS  PubMed  Google Scholar 

  51. Papi M, Caputo D, Palmieri V, Coppola R, Palchetti S, Bugli F, et al. Clinically approved PEGylated nanoparticles are covered by a protein corona that boosts the uptake by cancer cells. Nanoscale. 2017;9(29):10327–34.

    Article  CAS  PubMed  Google Scholar 

  52. Qiu Z, Zhou J, Zhang C, Cheng Y, Hu J, Zheng G. Antiproliferative effect of urolithin A, the ellagic acid-derived colonic metabolite, on hepatocellular carcinoma HepG2. 2.15 cells by targeting Lin28a/let-7a axis. Braz J Med Biol Res. 2018,51(7):e7220.

  53. He C, Hu Y, Yin L, Tang C, Yin C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials. 2010;31(13):3657–66.

    Article  CAS  PubMed  Google Scholar 

  54. Gabizon A, Shmeeda H, Barenholz Y. Pharmacokinetics of pegylated liposomal doxorubicin. Clin Pharmacokinet. 2003;42(5):419–36.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (82074077) and the Open Project of Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine) (No. WDCM2019011).

Author information

Authors and Affiliations

Authors

Contributions

S.Y. and C.Z.: methodology, investigation, and data curation; C.Z.: writing - original draft; J.H. and Y.M.: software and visualization; L.C.: formal analysis and validation; H.Y. and S.L.: resources. G.H.: supervision. G.Z.: conceptualization and project administration. Z.Q.: funding acquisition and writing - review and editing. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Guohua Zheng or Zhenpeng Qiu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, S., Zhang, C., Hu, J. et al. Preparation, Characterization, and In Vitro Pharmacodynamics and Pharmacokinetics Evaluation of PEGylated Urolithin A Liposomes. AAPS PharmSciTech 22, 26 (2021). https://doi.org/10.1208/s12249-020-01890-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-020-01890-y

KEY WORDS

Navigation