Skip to main content

Advertisement

Log in

Transbuccal Delivery of Isoniazid: Ex Vivo Permeability and Drug-Surfactant Interaction Studies

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The oral administration of isoniazid (INH) may lead to discontinuation of tuberculosis treatment due to drug-related hepatotoxicity events, and thus, the transbuccal delivery of this drug was investigated, for the first time, as an alternative administration route. Ex vivo permeability assays were performed in Franz-type diffusion chambers, applying INH alone and in combination with sodium dodecyl sulfate (SDS) and sodium taurocholate (ST). After confirming the formation of micelle structures by dynamic light scattering analysis, UV-visible spectroscopy and zeta potential analyses were used to investigate drug-micelle interactions. In zeta potential analyses, no electrostatical interactions were identified for both surfactants in saliva buffer pH 6.8. Spectrophotometric analyses, in turn, indicated chemical interactions between INH and SDS in both pH values (2.0 and 6.8) whereas no interaction between the drug and ST was observed. Despite the interaction between SDS and drug, this surfactant increased the buccal transport rate of INH by approximately 11 times when compared with the control. In contrast, ST did not increase the drug permeability. The INH retention in SDS-treated mucosa was significantly higher when compared with the control and an effect on intercellular lipids was suggested. In vivo studies are needed to confirm the high INH absorption found here.

Grapical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Daley CL. The global fight against tuberculosis. Thorac Surg Clin United States. 2019;29:19–25.

    Article  Google Scholar 

  2. Global tuberculosis report 2019. Geneva; 2019. Available from: https://apps.who.int/iris/bitstream/handle/10665/329368/9789241565714-eng.pdf?ua=1. Accessed 18 Dec 2019.

  3. Guidelines for treatment of drug-susceptible tuberculosis and patient care, 2017 update. Geneva; 2017. Available from: https://apps.who.int/iris/bitstream/handle/10665/255052/9789241550000-eng.pdf. Accessed 18 Dec 2019.

  4. Starke JR. Mycobacterium tuberculosis. In: Long S, Pickering L, Prober C, organizers. Princ Pract Pediatr Infect Dis Fourth London; 2012. p. 771–786.

  5. Quemard A, Lacave C, Laneelle G. Isoniazid inhibition of mycolic acid synthesis by cell extracts of sensitive and resistant strains of Mycobacterium aurum. Antimicrob Agents Chemother. 1991;35:1035–9.

    Article  CAS  Google Scholar 

  6. Ramachandran G, Swaminathan S. Tuberculosis. In: Padmanabhan S. Handb pharmacogenomics Stratif Med. 1o ed San Diego: Academic Press; 2014. p. 835–857.

  7. Saukkonen JJ, Cohn DL, Jasmer RM, Schenker S, Jereb JA, Nolan CM, et al. An official ATS statement: hepatotoxicity of antituberculosis therapy. Am J Respir Crit Care Med United States. 2006;174:935–52.

    Article  CAS  Google Scholar 

  8. Caon T, Campos CEM, Simoes CMO, Silva MAS. Novel perspectives in the tuberculosis treatment: administration of isoniazid through the skin. Int J Pharm Netherlands. 2015;494:463–70.

    Article  CAS  Google Scholar 

  9. Alkilani AZ, McCrudden MTC, Donnelly RF. Transdermal drug delivery: innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum. Pharmaceutics Switzerland. 2015;7:438–70.

    Article  CAS  Google Scholar 

  10. Chinna Reddy P, Chaitanya KSC, Madhusudan RY. A review on bioadhesive buccal drug delivery systems: current status of formulation and evaluation methods. Daru. 2011;19:385–403.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Dogra SS, Chander B, Krishna M. Tuberculosis of oral cavity: a series of one primary and three secondary cases. Indian J Otolaryngol Head Neck Surg. 2013;65:275–9.

    Article  CAS  Google Scholar 

  12. Nanda KDS, Mehta A, Marwaha M, Kalra M, Nanda J. A disguised tuberculosis in oral buccal mucosa. Dent Res J Medknow Publications Pvt Ltd. 2011;8:154–9.

    Google Scholar 

  13. Bagalad B. Tuberculosis of buccal mucosa: a case report and review of literature. Dent Chron. 2014;6:11–9.

    Google Scholar 

  14. Tandon D, Bhandari D, Lamba D, Faraz D, Makker D, Aggarwal D. Literature review of oral tuberculosis and report of a case with unique histological presentation. Indian J Tuberc. 2020;67:238–44.

    Article  Google Scholar 

  15. Franz-Montan M, Araujo D, Ribeiro L, Melo N, de Paula E. Nanostructured systems for transbuccal drug delivery. Nanostructures Oral Med. 2017. p. 87–121.

  16. Junginger H. Drug absorption enhancement, concepts, possibilities, limitations and trends. J Drug Target. 1996;4:51–2.

    Article  Google Scholar 

  17. Nicolazzo JA, Reed BL, Finnin BC. Assessment of the effects of sodium dodecyl sulfate on the buccal permeability of caffeine and estradiol. J Pharm Sci. 2004;93:431–40.

    Article  CAS  Google Scholar 

  18. Şenel S, Hincal AA. Drug permeation enhancement via buccal route: possibilities and limitations. J Control Release. 2001;72:133–44.

    Article  Google Scholar 

  19. Moghimipour E, Ameri A, Handali S. Absorption-enhancing effects of bile salts. Molecules. 2015;20:14451–73.

    Article  CAS  Google Scholar 

  20. Reddy KB, Govindasamy P, Jayaveera KN. Effect of bile salts on transbuccal permeability of carbamazepine through porcine buccal mucosa. J Pharm Res. 2017;16:110.

    Article  Google Scholar 

  21. Hansen SE, Marxen E, Janfelt C, Jacobsen J. Buccal delivery of small molecules – impact of levulinic acid, oleic acid, sodium dodecyl sulfate and hypotonicity on ex vivo permeability and spatial distribution in mucosa. Eur J Pharm Biopharm Elsevier. 2018;133:250–7.

    Article  CAS  Google Scholar 

  22. Marxen E, Jin L, Jacobsen J, Janfelt C, Hyrup B, Nicolazzo JA. Effect of permeation enhancers on the buccal permeability of nicotine: ex vivo transport studies complemented by MALDI MS imaging. Pharm Res. 2018;35.

  23. Montenegro-Nicolini M, Morales JO. Overview and future potential of buccal mucoadhesive films as drug delivery systems for biologics. AAPS PharmSciTech. 2017;18:3–14.

    Article  CAS  Google Scholar 

  24. Kimoto H, Ito Y, Matsumoto S, Hosoki E. A simple method for oral mucosal irritation test by intraoral instillation in rats. J Toxicol Sci. 2016;41:233–9.

    Article  CAS  Google Scholar 

  25. Caon T, Simões CMO. Effect of freezing and type of mucosa on ex vivo drug permeability parameters. AAPS PharmSciTech. 2011;12:587–92.

    Article  CAS  Google Scholar 

  26. Vries ME, Boddé HE, Verhoef JC, Ponec M, Craane WIHM, Junginger HE. Localization of the permeability barrier inside porcine buccal mucosa: a combined in vitro study of drug permeability, electrical resistance and tissue morphology. Int J Pharm. 1991;76:25–35.

    Article  Google Scholar 

  27. Kulkarni U, Mahalingam R, Pather I, Li X, Jasti B. Porcine buccal mucosa as in vitro model: effect of biological and experimental variables. J Pharm Sci 2010;99:1265–1277.

  28. Dhiman MK, Dhiman A, Sawant KK. Transbuccal delivery of 5-fluorouracil: permeation enhancement and pharmacokinetic study. AAPS PharmSciTech. 2009;10:258–65.

    Article  CAS  Google Scholar 

  29. Howie NM, Trigkas TK, Cruchley A, Wertz P, Squier CA, Williams D. Short-term exposure to alcohol increases the permeability of human oral mucosa. Oral Dis. 2001;7:349–54.

    Article  CAS  Google Scholar 

  30. Park JS, Lee J-Y, Lee YJ, Kim SJ, Cho Y-J, Yoon H Il, et al. Serum levels of antituberculosis drugs and their effect on tuberculosis treatment outcome. Antimicrob Agents Chemother 2016;60:92–98.

  31. Nicolazzo JA, Reed BL, Finnin BC. Buccal penetration enhancers - how do they really work? J Control Release. 2005;105:1–15.

    Article  CAS  Google Scholar 

  32. Donald P, McIlleron H. Antituberculosis drugs. In: Zumla H, Schaaf A, Grange J, Raviglione M, Yew W, Starke J, et al. Tuberculosis. Saunders Elsevier; 2009. p. 608–617.

  33. Arbex MA, de Varella M, CL, de Siqueira HR, de Mello FAF. Antituberculosis drugs: drug interactions, adverse effects, and use in special situations. Part 2: second line drugs. J Bras Pneumol. 2010;36:641–56.

  34. Shinkar D, Dhake A, Setty C. Drug delivery from the oral cavity: a focus on mucoadhesive buccal drug delivery systems. PDA J Pharm Sci Technol. 2012;66:466–500.

    Article  Google Scholar 

  35. Sohi H, Ahuja A, Ahmad FJ, Khar RK. Critical evaluation of permeation enhancers for oral mucosal drug delivery. Drug Dev Ind Pharm. 2010;36:254–82.

    Article  CAS  Google Scholar 

  36. Moraes SL, Rezende MOO. Determinação da concentração micelar crítica de ácidos húmicos por medidas de condutividade e espectroscopia. Quim Nova. 2004;27:701–5.

    Article  Google Scholar 

  37. Artusi M, Santi P, Colombo P, Junginger HE. Buccal delivery of thiocolchicoside: in vitro and in vivo permeation studies. Int J Pharm Netherlands. 2003;250:203–13.

    Article  CAS  Google Scholar 

  38. Morris SAV, Thompson RT, Glenn RW, Ananthapadmanabhan KP, Kasting GB. Mechanisms of anionic surfactant penetration into human skin: investigating monomer, micelle and submicellar aggregate penetration theories. Int J Cosmet Sci. 2019;41:55–66.

    Article  CAS  Google Scholar 

  39. Lips A, Ananthapadmanabhan KP, Vethamuthu M, Hua XY, Yang L, Vincent C, et al. Role of surfactant micelle charge in protein denaturation and surfactant-induced skin irritation. In: Rheih LD, Schlossman M, O’Lenick A, Somasundaran P. Surfactants Pers care Prod Decor Cosmet. 3o ed Boca Raton: CRC Press; 2006. p. 184–194.

  40. Hammouda B. Temperature effect on the nanostructure of SDS micelles in water. J Res Natl Inst Stand Technol. 2013;118:151–67.

    Article  CAS  Google Scholar 

  41. Atta NF, Galal A, Abu-Attia FM, Azab SM. Characterization and electrochemical investigations of micellar/drug interactions. Electrochim Acta. 2011;56:2510–7.

    Article  CAS  Google Scholar 

  42. Rangel-Yagui CO, Pessoa AJ, Tavares LC. Micellar solubilization of drugs. J Pharm Pharm Sci Canada. 2005;8:147–65.

    CAS  Google Scholar 

  43. Sheth U, Tiwari S, Bahadur A. Preparation and characterization of anti-tubercular drugs encapsulated in polymer micelles. J Drug Deliv Sci Technol. 2018;48.

  44. Padula C, Pozzetti L, Traversone V, Nicoli S, Santi P. In vitro evaluation of mucoadhesive films for gingival administration of lidocaine. AAPS PharmSciTech. 2013;14:1279–83.

    Article  CAS  Google Scholar 

  45. Deneer VHM, Drese GB, Roemelé PEH, Verhoef JC, Lie-A-Huen L, Kingma JH, et al. Buccal transport of flecainide and sotalol: effect of a bile salt and ionization state. Int J Pharm. 2002;241:127–34.

  46. Coello A, Meijide F, Nunez E, Vázquez TJ. Aggregation behavior of sodium cholate in aqueous solution. J Phys Chem. 1993;97:10186–91.

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the Brazilian funding agency CNPq/MCTI (Universal 01/2016 - Grant number: 408229/2016-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thiago Caon.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kroth, R., Argenta, D.F., Conte, J. et al. Transbuccal Delivery of Isoniazid: Ex Vivo Permeability and Drug-Surfactant Interaction Studies. AAPS PharmSciTech 21, 289 (2020). https://doi.org/10.1208/s12249-020-01827-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-020-01827-5

KEY WORDS

Navigation