Skip to main content

Advertisement

Log in

Lecithin Microemulsion Lipogels Versus Conventional Gels for Skin Targeting of Terconazole: In Vitro, Ex Vivo, and In Vivo Investigation

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Topical treatment of fungal infections has several superiorities over oral treatment. However, the greatest challenge for dermal delivery is the stratum corneum which is considered an effective barrier for penetration of most antifungal drugs into deeper skin layers. Terconazole (Tr), which is the first marketed triazole antifungal, was reported to be one of the most active azoles against vaginal candidiasis. Nevertheless, our work group is the first to investigate the potential of Tr in the treatment of skin mycosis via integration into lecithin microemulsion-based lipogels (LMBGs). The microemulsion regions of the investigated systems were detected through ternary phase diagrams. The in vitro characterization studies revealed promising physicochemical merits for the selected LMBGs as well as satisfactory in vitro antifungal activity. The current research work was endeavored to investigate the potential of such novel Tr-loaded LMBGs in comparison with conventional gels. Ex vivo permeation and retention studies in addition to in vivo deposition study showed a significant improvement in the permeability of Tr through animal skin from LMBGs compared to other conventional gels. Furthermore, the optimized microemulsion lipogel proved to be safe and a nonirritant to experimental animals through the acute sensitivity study and histological skin examination. Overall, lecithin-based microemulsion lipogels of different composition confirmed their potential as interesting nanocarriers for skin delivery of terconazole compared to current therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Shao PL, Huang LM, Hsueh PR. Recent advances and challenges in the treatment of invasive fungal infections. Int J Antimicrob Agents. 2007;30(6):487–95. https://doi.org/10.1016/j.ijantimicag.2007.07.019.

    Article  CAS  PubMed  Google Scholar 

  2. Dabas PS. An approach to etiology, diagnosis and management of different types of candidiasis. J Yeast Fungal Res. 2013;4(6):63–74. https://doi.org/10.5897/JYFR2013.0113.

    Article  Google Scholar 

  3. Calzavara-Pinton PG, Venturini M, Sala R. A comprehensive overview of photodynamic therapy in the treatment of superficial fungal infections of the skin. J Photochem Photobiol B Biol. 2005;78(1):1–6. https://doi.org/10.1016/j.jphotobiol.2004.06.006.

    Article  CAS  Google Scholar 

  4. Zhang Z, Tsai P-C, Ramezanli T, Michniak-Kohn BB. Polymeric nanoparticles-based topical delivery systems for the treatment of dermatological diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2013;5(3):205–18. https://doi.org/10.1002/wnan.1211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Aggarwal N, Goindi S. Preparation and evaluation of antifungal efficacy of griseofulvin loaded deformable membrane vesicles in optimized guinea pig model of Microsporum canis-dermatophytosis. Int J Pharm. 2012;437(1–2):277–87. https://doi.org/10.1016/j.ijpharm.2012.08.015.

    Article  CAS  PubMed  Google Scholar 

  6. Kyle AA, Dahl MV. Topical therapy for fungal infections. Am J Clin Dermatol. 2004;5(6):443–51 http://www.ncbi.nlm.nih.gov/pubmed/15663341.

    Article  Google Scholar 

  7. Gupta M, Goyal AK, Paliwal SR, Paliwal R, Mishra N, Vaidya B, et al. Development and characterization of effective topical liposomal system for localized treatment of cutaneous candidiasis. J Liposome Res. 2010;20(4):341–50. https://doi.org/10.3109/08982101003596125.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang AY, Camp WL, Elewski BE. Advances in topical and systemic antifungals. Dermatol Clin. 2007;25(2):165–83. https://doi.org/10.1016/j.det.2007.01.002.

    Article  CAS  PubMed  Google Scholar 

  9. Sood G, Nyirjesy P, Weitz MV, Chatwani A. Terconazole cream for non-Candida albicans fungal vaginitis: results of a retrospective analysis. Infect Dis Obstet Gynecol. 2000;8(5–6):240–3. https://doi.org/10.1002/1098-0997(2000)8:5<240::AID-IDOG1026>3.0.CO;2-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. El-naggar Y, Talaat SM, Bahey-el-din M, Abdallah OY. Novel lecithin-integrated liquid crystalline nanogels for enhanced cutaneous targeting of terconazole: development, in vitro and in vivo studies. Int J Nanomedicine. 2016;11:5531–47.

    Article  CAS  Google Scholar 

  11. Elnaggar YS, Etman S, Abdelmonsif DA, Abdallah OY. Novel piperine-loaded Tween-integrated monoolein cubosomes as brain-targeted oral nanomedicine in Alzheimer’s disease: pharmaceutical , biological , and toxicological studies. Int J Nanomedicine. 2015;10:5459–73.

    Article  CAS  Google Scholar 

  12. Elnaggar YSR, El-Massik MA, Abdallah OY. Fabrication, appraisal, and transdermal permeation of sildenafil citrate-loaded nanostructured lipid carriers versus solid lipid nanoparticles. Int J Nano. 2011;6:3195–205.

    Article  CAS  Google Scholar 

  13. Zhai Y, Zhai G. Advances in lipid-based colloid systems as drug carrier for topic delivery. J Control Release. 2014;193:90–9. https://doi.org/10.1016/j.jconrel.2014.05.054.

    Article  CAS  PubMed  Google Scholar 

  14. Das S, Chaudhury A. Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech. 2011;12(1):62–76. https://doi.org/10.1208/s12249-010-9563-0.

    Article  CAS  PubMed  Google Scholar 

  15. Attama AA, Momoh MA, Builders PF. Lipid nanoparticulate drug delivery systems: a revolution in dosage form design and development. In: Recent advances in novel drug carrier systems; 2012. p. 107–40. https://doi.org/10.5772/50486.

    Chapter  Google Scholar 

  16. Elnaggar YSR, El-Refaie WM, El-Massik MA, Abdallah OY. Lecithin-based nanostructured gels for skin delivery: an update on state of art and recent applications. J Control Release. 2014;180:10–24. https://doi.org/10.1016/j.jconrel.2014.02.004.

    Article  CAS  PubMed  Google Scholar 

  17. Vintiloiu A, Leroux J-C. Organogels and their use in drug delivery—a review. J Control Release. 2008;125(3):179–92. https://doi.org/10.1016/j.jconrel.2007.09.014.

    Article  CAS  PubMed  Google Scholar 

  18. Kumar R, Katare OP. Lecithin organogels as a potential phospholipid-structured system for topical drug delivery: a review. AAPS PharmSciTech. 2005;6(2):298–310. https://doi.org/10.1208/pt060240.

    Article  Google Scholar 

  19. Moulik SP, Paul BK. Structure, dynamics and transport properties of microemulsions. Adv Colloid Interf Sci. 1998;78(2):99–195. https://doi.org/10.1016/S0001-8686(98)00063-3.

    Article  CAS  Google Scholar 

  20. Jatav MP, Ramteke S. Formulation and evaluation of lecithin organogel for treatment of arthritis. Int J Adv Sci Res. 2015;1(07):300–7. https://doi.org/10.7439/ijasr.

    Article  Google Scholar 

  21. Luisi PL, Scartazzini R, Haering G, Schurtenberger P. Organogels from water-in-oil microemulsions. Colloid Polym Sci. 1990;268:356–74. https://doi.org/10.1007/BF01411679.

    Article  CAS  Google Scholar 

  22. Raut S, Bhadoriya SS, Uplanchiwar V, Mishra V, Gahane A, Jain SK. Lecithin organogel: a unique micellar system for the delivery of bioactive agents in the treatment of skin aging. Acta Pharm Sin B. 2012;2(1):8–15. https://doi.org/10.1016/j.apsb.2011.12.005.

    Article  CAS  Google Scholar 

  23. Zhao XY, Cao Q, Zheng LQ, Zhang GY. Rheological properties and microstructures of gelatin-containing microemulsion-based organogels. Colloids Surfaces A Physicochem Eng Asp. 2006;281(1–3):67–73. https://doi.org/10.1016/j.colsurfa.2006.02.051.

    Article  CAS  Google Scholar 

  24. Jadhav KR, Shaikh IM, Ambade KW, Kadam VJ. Applications of microemulsion based drug delivery system. Curr Drug Deliv. 2006;3(3):267–73. https://doi.org/10.2174/156720106777731118.

    Article  CAS  PubMed  Google Scholar 

  25. Willimann H, Walde P, Luisi PL, Gazzaniga A, Stroppolo F. Lecithin organogel as matrix for transdermal transport of drugs. J Pharm Sci. 1992;81(9):871–4. https://doi.org/10.1016/0006-291X(91)90622-E.

    Article  CAS  PubMed  Google Scholar 

  26. Nasseri A, Aboofazeli R, Zia H, Needham T. Lecithin stabilized microemulsion based organogels for topical application of ketorlac tromethamine. II. In vitro release study. Iran J Pharm Res. 2003;2(2):117–23.

    CAS  Google Scholar 

  27. Murdan S. Organogels in drug delivery. Expert Opin Drug Deliv. 2005;2(3):489–505.

    Article  CAS  Google Scholar 

  28. Surjyanarayan M, Sawant KK, Mandal S. Lecithin stabilized organogel: design and development for topical application of clobetasol propionate. Int J PharmTech Res. 2010;2(2):1133–8.

    Google Scholar 

  29. Thorat SP, Rane SI. Formulation and in vitro evaluation of lecithin (soya and egg) based aceclofenac organogels. J Pharm Res. 2010;3(6):1438–41.

    CAS  Google Scholar 

  30. Dreher F, Wehrli E. Interaction of a lecithin microemulsion gel with human stratum corneum and its effect on transdermal transport. J Control Release. 1997;45:131–40.

    Article  CAS  Google Scholar 

  31. Aboofazeli R, Zia H, Needham TE. Transdermal delivery of nicardipine: an approach to in vitro permeation enhancement. Drug Deliv. 2002;9(4):239–47. https://doi.org/10.1080/10717540260397855.

    Article  CAS  PubMed  Google Scholar 

  32. Scartazzini R, Luisi P. Organogels from lecithins. J Phys Chem. 1988;92(3):829–33. https://doi.org/10.1021/j100314a047.

    Article  CAS  Google Scholar 

  33. Gosenca M, Bešter-Rogač M, Gašperlin M. Lecithin based lamellar liquid crystals as a physiologically acceptable dermal delivery system for ascorbyl palmitate. Eur J Pharm Sci. 2013;50(1):114–22. https://doi.org/10.1016/j.ejps.2013.04.029.

    Article  CAS  PubMed  Google Scholar 

  34. Lopes LB, Speretta FFF, Bentley MVLB. Enhancement of skin penetration of vitamin K using monoolein-based liquid crystalline systems. Eur J Pharm Sci. 2007;32(3):209–15. https://doi.org/10.1016/j.ejps.2007.07.006.

    Article  CAS  PubMed  Google Scholar 

  35. Chorilli M, Prestes PS, Rigon RB, Leonardi GR, Chiavacci LA, Sarmento VHV, et al. Structural characterization and in vivo evaluation of retinyl palmitate in non-ionic lamellar liquid crystalline system. Colloids Surfaces B Biointerfaces. 2011;85(2):182–8. https://doi.org/10.1016/j.colsurfb.2011.02.027.

    Article  CAS  PubMed  Google Scholar 

  36. El Laithy HM, El-Shaboury KMF. The development of Cutina lipogels and gel microemulsion for topical administration of fluconazole. AAPS PharmSciTech. 2002;3(4):77–85. https://doi.org/10.1208/pt030435.

    Article  Google Scholar 

  37. Nesseem DI. Formulation and evaluation of itraconazole via liquid crystal for topical delivery system. J Pharm Biomed Anal. 2001;26(3):387–99. https://doi.org/10.1016/S0731-7085(01)00414-9.

    Article  CAS  PubMed  Google Scholar 

  38. Zakir F, Vaidya B, Goyal AK, Malik B, Vyas SP. Development and characterization of oleic acid vesicles for the topical delivery of fluconazole. Drug Deliv. 2010;17(4):238–48. https://doi.org/10.3109/10717541003680981.

    Article  CAS  PubMed  Google Scholar 

  39. Kumar J, Muralidharan S, Parasuraman S. Evaluation of antifungal activity of sustained release microsponge enriched fluconazole gel for penile candidiasis in male rats. Int J PharmTech Res. 2014;6(6):1888–97.

    Google Scholar 

  40. Ozcan I, Abaci O, Uztan AH, et al. Enhanced topical delivery of terbinafine hydrochloride with chitosan hydrogels. AAPS PharmSciTech. 2009;10(3):1024–31. https://doi.org/10.1208/s12249-009-9299-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kumar L, Verma S, Jamwal S, Vaidya S, Vaidya B. Polymeric microparticles-based formulation for the eradication of cutaneous candidiasis: development and characterization. Pharm Dev Technol. 2014;19(3):318–25. https://doi.org/10.3109/10837450.2013.778874.

    Article  CAS  PubMed  Google Scholar 

  42. Elmoslemany RM, Abdallah OY, El-khordagui LK, Khalafallah NM. Propylene glycol liposomes as a topical delivery system for miconazole nitrate: comparison with conventional liposomes. AAPS PharmSciTech. 2012;13(2):723–31. https://doi.org/10.1208/s12249-012-9783-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vaghasiya H, Kumar A, Sawant K. Development of solid lipid nanoparticles based controlled release system for topical delivery of terbinafine hydrochloride. Eur J Pharm Sci. 2013;49(2):311–22. https://doi.org/10.1016/j.ejps.2013.03.013.

    Article  CAS  PubMed  Google Scholar 

  44. IACUC Faculty and Staff. Guideline on anesthesia and analgesia in laboratory animals. Univ South Florida. 2015:1–20. https://doi.org/10.1016/B978-012373898-1.50016-4.

    Chapter  Google Scholar 

  45. Butani D, Yewale C, Misra A. Amphotericin B topical microemulsion: formulation, characterization and evaluation. Colloids Surfaces B Biointerfaces. 2014;116:351–8. https://doi.org/10.1016/j.colsurfb.2014.01.014.

    Article  CAS  PubMed  Google Scholar 

  46. Shishu, Aggarwal N. Preparation of hydrogels of griseofulvin for dermal application. Int J Pharm. 2006;326(1–2):20–4. https://doi.org/10.1016/j.ijpharm.2006.07.001.

    Article  CAS  PubMed  Google Scholar 

  47. Sahoo S, Pani NR, Sahoo SK. Microemulsion based topical hydrogel of sertaconazole: formulation, characterization and evaluation. Colloids Surfaces B Biointerfaces. 2014;120:193–9. https://doi.org/10.1016/j.colsurfb.2014.05.022.

    Article  CAS  PubMed  Google Scholar 

  48. El-Refaie WM, Elnaggar YSR, El-Massik MA, Abdallah OY. Novel curcumin-loaded gel-core hyaluosomes with promising burn-wound healing potential: development, in-vitro appraisal and in-vivo studies. Int J Pharm. 2015;486(1–2):88–98. https://doi.org/10.1016/j.ijpharm.2015.03.052.

    Article  CAS  PubMed  Google Scholar 

  49. Verma S, Bhardwaj A, Vij M, Bajpai P, Goutam N, Kumar L. Oleic acid vesicles: a new approach for topical delivery of antifungal agent. Artif Cells Nanomed Biotechnol. 2014;42(2):95–101. https://doi.org/10.3109/21691401.2013.794351.

    Article  CAS  PubMed  Google Scholar 

  50. Song SH, Lee KM, Kang JB, Lee SG, Kang MJ, Choi YW. Improved skin delivery of voriconazole with a nanostructured lipid carrier-based hydrogel formulation. Chem Pharm Bull. 2014;62(8):793–8. https://doi.org/10.1248/cpb.c14-00202.

    Article  CAS  PubMed  Google Scholar 

  51. Song CK, Balakrishnan P, Shim CK, Chung SJ, Chong S, Kim DD. A novel vesicular carrier, transethosome, for enhanced skin delivery of voriconazole: characterization and in vitro/in vivo evaluation. Colloids Surfaces B Biointerfaces. 2012;92:299–304. https://doi.org/10.1016/j.colsurfb.2011.12.004.

    Article  CAS  PubMed  Google Scholar 

  52. Ge S, Lin Y, Lu H, Li Q, He J, Chen B, et al. Percutaneous delivery of econazole using microemulsion as vehicle: formulation, evaluation and vesicle-skin interaction. Int J Pharm. 2014;465:120–31. https://doi.org/10.1016/j.ijpharm.2014.02.012.

    Article  CAS  PubMed  Google Scholar 

  53. Aggarwal N, Goindi S. Dermatopharmacokinetic and pharmacodynamic evaluation of ethosomes of griseofulvin designed for dermal delivery. J Nanopart Res. 2013;15(10):1983. https://doi.org/10.1007/s11051-013-1983-9.

    Article  CAS  Google Scholar 

  54. IACUC Staff. Recommended methods of anesthesia, analgesia, and euthanasia for laboratory animal species. Albert Einstein Coll Med:1–12.

  55. Gupta M, Vyas SP. Development, characterization and in vivo assessment of effective lipidic nanoparticles for dermal delivery of fluconazole against cutaneous candidiasis. Chem Phys Lipids. 2012;165(4):454–61. https://doi.org/10.1016/j.chemphyslip.2012.01.006.

    Article  CAS  PubMed  Google Scholar 

  56. Wavikar P, Vavia P. Nanolipidgel for enhanced skin deposition and improved antifungal activity. AAPS PharmSciTech. 2013;14(1):222–33. https://doi.org/10.1208/s12249-012-9908-y.

    Article  CAS  PubMed  Google Scholar 

  57. Azeem A, Talegaonkar S, Negi LM, Ahmad FJ, Khar RK, Iqbal Z. Oil based nanocarrier system for transdermal delivery of ropinirole: a mechanistic, pharmacokinetic and biochemical investigation. Int J Pharm. 2012;422(1–2):436–44. https://doi.org/10.1016/j.ijpharm.2011.10.039.

    Article  CAS  PubMed  Google Scholar 

  58. Sahoo S, Kumar N, Bhattacharya C, Sagiri SS, Jain K, Pal K, et al. Organogels: properties and applications in drug delivery. Des Monomers Polym. 2011;14(2):95–108. https://doi.org/10.1163/138577211X555721.

    Article  CAS  Google Scholar 

  59. Janssen Inc. TERAZOL® 7 terconazole vaginal cream 0.4% w/w, product monograph. 2014:1–23. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Product+monograph#2.

  60. Shchipunov YA. Lecithin organogel: a micellar system with unique properties. Colloids Surfaces A Physicochem Eng Asp. 2001;185:541–54. https://doi.org/10.1016/S0927-7757(01)00511-8.

    Article  Google Scholar 

  61. Parsaee S, Sarbolouki MN, Parnianpour M. In-vitro release of diclofenac diethylammonium from lipid-based formulations. Int J Pharm. 2002;241(1):185–90. https://doi.org/10.1016/S0378-5173(02)00238-7.

    Article  CAS  PubMed  Google Scholar 

  62. Shaikh IM, Jadhav KR, Gide PS, Kadam VJ, Pisal SS. Topical delivery of aceclofenac from lecithin organogels: preformulation study. Curr Drug Deliv. 2006;3(4):417–27.

    Article  CAS  Google Scholar 

  63. Rane SS, Anderson BD. What determines drug solubility in lipid vehicles: is it predictable? Adv Drug Deliv Rev. 2008;60(6):638–56. https://doi.org/10.1016/j.addr.2007.10.015.

    Article  CAS  PubMed  Google Scholar 

  64. Sahle FF, Metz H, Wohlrab J, Neubert RHH. Lecithin-based microemulsions for targeted delivery of ceramide AP into the stratum corneum: formulation, characterizations, and in vitro release and penetration studies. Pharm Res. 2013;30:538–51. https://doi.org/10.1007/s11095-012-0899-x.

    Article  CAS  PubMed  Google Scholar 

  65. Zielinska-Jurek A, Reszczynska J, Grabowska E, Zaleska A. Nanoparticles preparation using microemulsion systems. In: Najjar R, editor. Microemulsions—an introduction to properties and applications. Rijeka: InTech Publisher; 2012. p. 229–50.

    Google Scholar 

  66. Aboofazeli R, Barlow D, Lawrence MJ. Particle size analysis of concentrated phospholipid microemulsions II. Photon correlation spectroscopy. AAPS PharmSci. 2000;2(2):1–10. https://doi.org/10.1208/ps020319.

    Article  PubMed Central  Google Scholar 

  67. Serajuddin ATM. Enhanced microemulsion formation in lipid-based drug delivery systems by combining mono-esters of medium-chain fatty acids with di- or tri-esters. J Excipients Food Chem. 2012;3(2):29–44 https://ojs.abo.fi/index.php/jefc/article/view/138.

    Google Scholar 

  68. Belitz H-D, Grosch W, Schieberle P. Food additives. In: Food chemistry; 2009. p. 429–66.

    Google Scholar 

  69. Malkin A, Isayev AI. Rheology: concepts, methods & applications. In: Rheology: concepts, methods & applications. 2nd edition; 2012. p. 127–221.

    Chapter  Google Scholar 

  70. Shchipunov YA, Shumilina EV. Lecithin bridging by hydrogen bonds in the organogel. Mater Sci Eng C. 1995;3(1):43–50. https://doi.org/10.1016/0928-4931(95)00102-6.

    Article  Google Scholar 

  71. Shchipunov YA, Mezzasalma SA, Koper GJM, Hoffmann H. Lecithin organogel with new rheological and scaling behavior. J Phys Chem B. 2001;105(43):10484–8. https://doi.org/10.1021/jp010874n.

    Article  CAS  Google Scholar 

  72. Coneac G, Vlaia V, Olariu I, Muţ AM, Anghel DF, Ilie C, et al. Development and evaluation of new microemulsion-based hydrogel formulations for topical delivery of fluconazole. AAPS PharmSciTech. 2015;16(4):889–904. https://doi.org/10.1208/s12249-014-0275-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Olariu I, Coneac G, Vlaia L, et al. Development and evaluation of microemulsion-based hydrogel formulations for topical delivery of propranolol hydrochloride. Dig J Nanomater Biostructures. 2014;9(1):395–412.

    Google Scholar 

  74. Moser K, Kriwet K, Naik A, Kalia YN, Guy RH. Passive skin penetration enhancement and its quantification in vitro. Eur J Pharm Biopharm. 2001;52(2):103–12. https://doi.org/10.1016/S0939-6411(01)00166-7.

    Article  CAS  PubMed  Google Scholar 

  75. Elsheikh MA, Elnaggar YSR, Gohar EY, Abdallah OY. Nanoemulsion liquid preconcentrates for raloxifene hydrochloride: optimization and in vivo appraisal. Int J Nanomedicine. 2012;7:3787–802. https://doi.org/10.2147/IJN.S33186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Deveda P, Jain A, Vyas N, Khambete H, Jain S. Gellified emulsion for sustain delivery of itraconazole for topical fungal diseases. Int J Pharm Pharm Sci. 2010;2(1):104–12.

    CAS  Google Scholar 

  77. Higuchi T. Physical chemical analysis of percutaneous absorption process from creams and ointments. J Soc Cosmet Chem. 1960;11(2):85–97 http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:PHYSICAL+CHEMICAL+ANALYSIS+OF+PERCUTANEOUS+ABSORPTION+PROCESS+FROM+CREAMS+AND+OINTMENTS#0.

    Google Scholar 

  78. Morrow DIJ, Mccarron PA, Woolfson AD, Donnelly RF. Innovative strategies for enhancing topical and transdermal drug delivery. Open Drug Deliv J. 2007;1:36–59. https://doi.org/10.2174/187412660701013606.

    Article  CAS  Google Scholar 

  79. Lopes L. Overcoming the cutaneous barrier with microemulsions. Pharmaceutics. 2014;6(1):52–77. https://doi.org/10.3390/pharmaceutics6010052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ustündağ Okur N, Apaydın S, Karabay Yavaşoğlu NÜ, Yavaşoğlu A, Karasulu HY. Evaluation of skin permeation and anti-inflammatory and analgesic effects of new naproxen microemulsion formulations. Int J Pharm. 2011;416(1):136–44. https://doi.org/10.1016/j.ijpharm.2011.06.026.

    Article  CAS  PubMed  Google Scholar 

  81. Takahashi K, Tamagawa S, Katagi T, et al. In vitro transport of sodium diclofenac across rat abdominal skin: effect of selection of oleaginous component and the addition of alcohols to the vehicle. ChemPharm Bull. 1991;39(1):154–8.

    CAS  Google Scholar 

  82. Valenta C, Wanka M, Heidlas J. Evaluation of novel soya-lecithin formulations for dermal use containing ketoprofen as a model drug. J Control Release. 2000;63(1–2):165–73. https://doi.org/10.1016/S0168-3659(99)00199-6.

    Article  CAS  PubMed  Google Scholar 

  83. Tan Q, Liu W, Guo C, Zhai G. Preparation and evaluation of quercetin-loaded lecithin-chitosan nanoparticles for topical delivery. Int J Nanomedicine. 2011;6:1621–30. https://doi.org/10.2147/IJN.S22411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Morrow DIJ, McCarron PA, Woolfson AD, et al. Influence of penetration enhancers on topical delivery of 5-aminolevulinic acid from bioadhesive patches. J Pharm Pharmacol. 2010;62(6):685–95. https://doi.org/10.1211/jpp.62.06.0004.

    Article  CAS  PubMed  Google Scholar 

  85. Madheswaran T, Baskaran R, Yong CS, Yoo BK. Enhanced topical delivery of finasteride using glyceryl monooleate-based liquid crystalline nanoparticles stabilized by cremophor surfactants. AAPS PharmSciTech. 2013;15(1):44–51. https://doi.org/10.1208/s12249-013-0034-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. da Silva ER, de Freitas ZMF, Gitirana LDB, Ricci-Júnior E. Improving the topical delivery of zinc phthalocyanine using oleic acid as a penetration enhancer: in vitro permeation and retention. Drug Dev Ind Pharm. 2011;37(5):569–75. https://doi.org/10.3109/03639045.2010.529144.

    Article  CAS  PubMed  Google Scholar 

  87. El Maghraby GM, Barry BW, Williams AC. Liposomes and skin: from drug delivery to model membranes. Eur J Pharm Sci. 2008;34(4–5):203–22. https://doi.org/10.1016/j.ejps.2008.05.002.

    Article  CAS  PubMed  Google Scholar 

  88. Rhee YS, Choi JG, Park ES, Chi SC. Transdermal delivery of ketoprofen using microemulsions. Int J Pharm. 2001;228(1–2):161–70. https://doi.org/10.1016/S0378-5173(01)00827-4.

    Article  CAS  PubMed  Google Scholar 

  89. Pathan IB, Setty CM. Chemical penetration enhancers for transdermal drug delivery systems. Trop J Pharm Res. 2009;8(2):173–9. https://doi.org/10.1081/DDC-100100984.

    Article  CAS  Google Scholar 

  90. Kanikkannan N, Kandimalla K, Lamba SS, Singh M. Structure-activity relationship of chemical penetration enhancers in transdermal drug delivery. Curr Med Chem. 2000;7(6):593–608 http://www.ncbi.nlm.nih.gov/pubmed/10702628.

    Article  CAS  Google Scholar 

  91. Benson HA. Transdermal drug delivery: penetration enhancement techniques. Curr Drug Deliv. 2005;2(1):23–33 http://www.ncbi.nlm.nih.gov/pubmed/16305405.

    Article  CAS  Google Scholar 

  92. Dhamecha D, Rathi AA, Saifee M, Lahoti SR, Dehghan MHG. Drug vehicle based approaches of penetration enhancement. Int J Pharm Pharm Sci. 2009;1(1):24–46.

    CAS  Google Scholar 

  93. Vicentini FTMC, Simi TRM, Del Ciampo JO, et al. Quercetin in w/o microemulsion: in vitro and in vivo skin penetration and efficacy against UVB-induced skin damages evaluated in vivo. Eur J Pharm Biopharm. 2008;69(3):948–57. https://doi.org/10.1016/j.ejpb.2008.01.012.

    Article  CAS  PubMed  Google Scholar 

  94. Zhao X, Liu JP, Zhang X, Li Y. Enhancement of transdermal delivery of theophylline using microemulsion vehicle. Int J Pharm. 2006;327(1–2):58–64. https://doi.org/10.1016/j.ijpharm.2006.07.027.

    Article  CAS  PubMed  Google Scholar 

  95. Paolino D, Ventura CA, Nisticò S, Puglisi G, Fresta M. Lecithin microemulsions for the topical administration of ketoprofen: percutaneous adsorption through human skin and in vivo human skin tolerability. Int J Pharm. 2002;244(1–2):21–31. https://doi.org/10.1016/S0378-5173(02)00295-8.

    Article  CAS  PubMed  Google Scholar 

  96. Lv Q, Yu A, Xi Y, Li H, Song Z, Cui J, et al. Development and evaluation of penciclovir-loaded solid lipid nanoparticles for topical delivery. Int J Pharm. 2009;372(1–2):191–8. https://doi.org/10.1016/j.ijpharm.2009.01.014.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara M. Talaat.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talaat, S.M., Elnaggar, Y.S.R. & Abdalla, O.Y. Lecithin Microemulsion Lipogels Versus Conventional Gels for Skin Targeting of Terconazole: In Vitro, Ex Vivo, and In Vivo Investigation. AAPS PharmSciTech 20, 161 (2019). https://doi.org/10.1208/s12249-019-1374-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-019-1374-3

KEY WORDS

Navigation