Skip to main content
Log in

A Simplified Geometric Model to Predict Nasal Spray Deposition in Children and Adults

  • Research Article
  • Theme: Team Science and Education for Pharmaceuticals: the NIPTE Model
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

A mathematical approach was developed to estimate spray deposition patterns in the nasal cavity based on the geometric relationships between the emitted spray plume and the anatomical dimensions of the nasal valve region of the nasal cavity. Spray plumes were assumed to be spherical cones and the nasal valve region was approximated as an ellipse. The effect of spray plume angle (15–85°) on the fraction of the spray able to pass through the nasal valve (deposition fraction) was tested for a variety of nasal valve (ellipse) shapes and cross-sectional areas based on measured dimensions from pediatric and adult nasal cavities. The effect of the distances between the tip of the nasal spray device and the nasal valve (0.2–1.9 cm) on the deposition fraction was also tested. Simulation results show that (1) decreasing spray plume angles resulted in higher deposition fractions, (2) deposition fraction was inversely proportional to the spray distance and the nasal valve (ellipse) major/minor axis ratio, and (3) for fixed major/minor axis ratios, improved deposition occurred with larger nasal valve cross-sectional areas. For a typical adult nasal valve, plume angles of less than 40° emitted from a distance of 1 cm resulted depositions greater than 90% within the main nasal cavity, whereas for a 12-year-old child, only the most narrow plume angles (< 20°) administered resulted in significant deposition beyond the nasal valve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cheng YS, Yeh HC, Swift DL. Aerosol deposition in human nasal airway for particles 1 nm to 20 μm: a model study. Radiat Prot Dosim. 1991;38:41–7.

    Article  CAS  Google Scholar 

  2. Kimbell JS, Segal RA, Asgharian B, Wong BA, Schroeter JD, Southall JP, et al. Characterization of deposition from nasal spray devices using a computational fluid dynamics model of the human nasal passages. J Aerosol Med. 2007;20(1):59–74.

    Article  PubMed  Google Scholar 

  3. Frank DO, Kimbell JS, Pawar S, Rhee JS. Effects of anatomy and particle size on nasal sprays and nebulizers. Otolaryngol Head Neck Surg. 2012;146(2):313–9.

    Article  PubMed  Google Scholar 

  4. Xi J, Si X, Kim JW, Berlinski A. Simulation of airflow and aerosol deposition in the nasal cavity of a 5-year-old child. J Aerosol Sci. 2011;42(3):156–73.

    Article  CAS  Google Scholar 

  5. Kundoor V, Dalby RN. Effect of formulation and administration related variables on deposition pattern of nasal spray pumps evaluated using a nasal cast. Pharm Res. 2011;28(8):1895–904.

    Article  CAS  PubMed  Google Scholar 

  6. Foo MY, Cheng YS, Su WC, Donovan MD. The influence of spray properties on intranasal deposition. J Aerosol Med. 2007;20(4):495–508.

    Article  CAS  PubMed  Google Scholar 

  7. Suman JD, Laube BL, Lin T, Brouet G, Dalby R. Validity of in vitro tests on aqueous spray pumps as surrogates for nasal deposition. Pharm Res. 2002;19(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  8. Laube BL, Sharpless G, Vikani AR, Harrand V, Zinreich SJ, Sedberry K, et al. Intranasal deposition of Accuspray™ aerosol in anatomically correct models of 2-, 5-, and 12-year-old children. J Aerosol Med Pulm Drug Deliv. 2015;28(5):320–33.

    Article  CAS  PubMed  Google Scholar 

  9. Tong X, Dong J, Shang Y, Inthavong K, Tu J. Effects of nasal drug delivery device and its orientation on sprayed particle deposition in a realistic human nasal cavity. Comput Biol Med. 2016;77:40–8.

    Article  CAS  PubMed  Google Scholar 

  10. Newman SP, Moren F, Clarke SW. Deposition pattern of nasal sprays in man. Rhinology. 1988;26(2):111–20.

    CAS  PubMed  Google Scholar 

  11. Xi J, Yuan JE, Zhang Y, Nevorski D, Wang Z, Zhou Y. Visualization and quantification of nasal and olfactory deposition in a sectional adult nasal airway cast. Pharm Res. 2016;33(6):1527–41.

    Article  CAS  PubMed  Google Scholar 

  12. Sawant NA, Donovan MD. In vitro assessment of spray deposition patterns in a pediatric (12 year-old) nasal cavity model. Pharm Res. 2018;35(5):108.

    Article  CAS  PubMed  Google Scholar 

  13. Kublik H, Vidgren MT. Nasal delivery systems and their effect on deposition and absorption. Adv Drug Deliv Rev. 1998;29(1):157–77.

    Article  CAS  PubMed  Google Scholar 

  14. Aggarwal R, Cardozo A, Homer J. The assessment of topical nasal drug distribution. Clin Otolaryngol. 2004;29(3):201–5.

    Article  CAS  PubMed  Google Scholar 

  15. Hallworth GW, Padfield JM. A comparison of the regional deposition in a model nose of a drug discharged from metered serosel and metered-pump nasal delivery systems. J Allergy Clin Immunol. 1986;77(2):348–53.

    Article  CAS  PubMed  Google Scholar 

  16. Inthavong K, Tian Z, Li H, Tu J, Yang W, Xue C, et al. A numerical study of spray particle deposition in a human nasal cavity. Aerosol Sci Technol. 2006;40(11):1034–45.

    Article  CAS  Google Scholar 

  17. Rygg A, Hindle M, Longest PW. Linking suspension nasal spray drug deposition patterns to pharmacokinetic profiles: a proof-of-concept study using computational fluid dynamics. J Pharm Sci. 2016;105(6):1995–2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Engelhardt L, Röhm M, Mavoungou C, Schindowski K, Schafmeister A, Simon U. First steps to develop and validate a CFPD model in order to support the design of nose-to-brain delivered biopharmaceuticals. Pharm Res. 2016;33(6):1337–50.

    Article  CAS  PubMed  Google Scholar 

  19. Abd El-Shafy MA PJ, Bommareddy GSP, Dondeti P, Egbaria K. Plume geometry and spray pattern tests as tools to predict nasal deposition. AAPS PharmSci. 2000;2(2):Abstract 297. http://abstracts.aaps.org/SecureView/AAPSJournal/radzmy0fbng.htm

  20. Foo MY. Deposition pattern of nasal sprays in the human nasal airway—interactions among formulation, device, anatomy and administration techniques: University of Iowa; 2007.

    Google Scholar 

  21. Larson RE, Hostetler RP, Edwards BH. Multiple integration. In: Calculus with analytical geometry. Lexington: D. C. Heath and Company; 1990. p. 959.

    Google Scholar 

  22. Gillett P. Calculus and analytic geometry. Lexington: D. C. Heath and Company; 1981. p. 641–5.

    Google Scholar 

  23. Xi J, Longest PW. Numerical predictions of submicrometer aerosol deposition in the nasal cavity using a novel drift flux approach. Int J Heat Mass Transf. 2008;51(23):5562–77.

    Article  Google Scholar 

  24. Dastan A, Abouali O, Ahmadi G. CFD simulation of total and regional fiber deposition in human nasal cavities. J Aerosol Sci. 2014;69:132–49.

    Article  CAS  Google Scholar 

  25. Kesavanathan J, Bascom R, Swift DL. The effect of nasal passage characteristics on particle deposition. J Aerosol Med. 1998;11(1):27–39.

    Article  Google Scholar 

  26. Riechelmann H, Rheinheimer M, Wolfensberger M. Acoustic rhinometry in pre-school children. Clin Otolaryngol. 1993;18(4):272–7.

    Article  CAS  PubMed  Google Scholar 

  27. Pedersen O, Hilberg O, Berkowitz R, Yamagiwa M. Nasal cavity dimensions in the newborn measured by acoustic reflections. Laryngoscope. 1994;104(8):1023–8.

    Article  CAS  PubMed  Google Scholar 

  28. Warren D, Duany L, Fischer N. Nasal pathway resistance in normal and cleft lip and palate subjects. Cleft Palate Craniofac J. 1969;6:134–40.

    CAS  Google Scholar 

  29. Ghahramani E, Abouali O, Emdad H, Ahmadi G. Numerical analysis of stochastic dispersion of micro-particles in turbulent flows in a realistic model of human nasal/upper airway. J Aerosol Sci. 2014;67:188–206.

    Article  CAS  Google Scholar 

  30. Keeler JA, Patki A, Woodard CR, Frank-Ito DO. A computational study of nasal spray deposition pattern in four ethnic groups. J Aerosol Med Pulm Drug Deliv. 2016;29(2):153–66.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by an FDA Grant to the National Institute for Pharmaceutical Technology and Education (NIPTE) titled “The Critical Path Manufacturing Sector Research Initiative (U01)”: grant no. 5U01FD004275.

The results and conclusions presented reflect the opinions of the authors and not those of the funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maureen D. Donovan.

Additional information

Guest Editors: Ajaz S. Hussain, Kenneth Morris, and Vadim J. Gurvich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foo, M.Y., Sawant, N., Overholtzer, E. et al. A Simplified Geometric Model to Predict Nasal Spray Deposition in Children and Adults. AAPS PharmSciTech 19, 2767–2777 (2018). https://doi.org/10.1208/s12249-018-1031-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-018-1031-2

KEY WORDS

Navigation