Skip to main content
Log in

A Scale-up Approach for Film Coating Process Based on Surface Roughness as the Critical Quality Attribute

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Scale-up approaches for film coating process have been established for each type of film coating equipment from thermodynamic and mechanical analyses for several decades. The objective of the present study was to establish a versatile scale-up approach for film coating process applicable to commercial production that is based on critical quality attribute (CQA) using the Quality by Design (QbD) approach and is independent of the equipment used. Experiments on a pilot scale using the Design of Experiment (DoE) approach were performed to find a suitable CQA from surface roughness, contact angle, color difference, and coating film properties by terahertz spectroscopy. Surface roughness was determined to be a suitable CQA from a quantitative appearance evaluation. When surface roughness was fixed as the CQA, the water content of the film-coated tablets was determined to be the critical material attribute (CMA), a parameter that does not depend on scale or equipment. Finally, to verify the scale-up approach determined from the pilot scale, experiments on a commercial scale were performed. The good correlation between the surface roughness (CQA) and the water content (CMA) identified at the pilot scale was also retained at the commercial scale, indicating that our proposed method should be useful as a scale-up approach for film coating process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Maurer L, Leuenberger H. Terahertz pulsed imaging and near infrared imaging to monitor the coating process of pharmaceutical tablets. Int J Pharm. 2009;370:8–16.

    Article  CAS  PubMed  Google Scholar 

  2. Knop K, Kleinebudde P. PAT-tools for process control in pharmaceutical film coating applications. Int J Pharm. 2013;457:527–36.

    Article  CAS  PubMed  Google Scholar 

  3. Agrawal AM, Pandey P. Scale up of pan coating process using quality by design principles. J Pharm Sci. 2015;104(11):3589–611.

    Article  CAS  PubMed  Google Scholar 

  4. Tanabe S, Nakagawa H, Watanabe T, Minami H, Kano M, Urbanetz NA. Setting the process parameters for the coating process in order to assure tablet appearance based on multivariate analysis of prior data. Int J Pharm. 2016;511:341–50.

    Article  CAS  PubMed  Google Scholar 

  5. Pandey P, Turton R, Joshi N, Hammerman E, Ergun J. Scale-up of a pan-coating process. AAPS PharmSciTech. 2006;7(4):E125–32.

    Article  PubMed Central  Google Scholar 

  6. Prpich A, Am Ende M, Katzschner T, Lubczyk V, Weyhers H, Bernhard G. Drug product modeling predictions for scale-up of tablet film coating—a quality by design approach. Comp Chem Eng. 2010;34:1092–7.

    Article  CAS  Google Scholar 

  7. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use. Pharmaceutical Development Q8 (R2). 2009. http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q8_R1/Step4/Q8_R2_Guideline.pdf

  8. Yu LX. Pharmaceutical quality by design: product and process development, understanding, and control. Pharm Res. 2008;25(4):781–91.

    Article  CAS  PubMed  Google Scholar 

  9. Mazumder S, Pavurala N, Manda P, Xu X, Cruz CN, Krishnaiah YSR. Quality by design approach for studying the impact of formulation and process variables on product quality of oral disintegrating films. Int J Pharm. 2017;527:151–60.

    Article  CAS  PubMed  Google Scholar 

  10. Teckoe J, Mascaro T, Farrell TP, Rajabi-Siahboomi AR. Process optimization of a novel immediate release film coating system using QbD principles. AAPS PharmSciTech. 2013;14(2):531–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dubey A, Boukouvala F, Keyvan G, Hsia R, Saranteas K, Brone D, et al. Improvement of tablet coating uniformity using a quality by design approach. AAPS PharmSciTech. 2012;13(1):231–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nayak BK, Elchidana P, Sahu PK. A quality by design approach for coating process parameter optimization. Indian J Pharm Sci. 2017;79(3):345–52.

    Article  Google Scholar 

  13. Alleso M, Holm R, Holm P. Roller compaction scale-up using roll width as scale factor and laser-based determined ribbon porosity as critical material attribute. Eur J Pharm Sci. 2016;87:69–78.

    Article  PubMed  Google Scholar 

  14. Nakagawa H, Kikkawa Y, Matsuura K, Tanabe S, Watanabe T. Implementation of enhanced QbD to drug product development. Jpn Soc Pharm Mach Eng. 2015;24:469–75.

    Google Scholar 

  15. Zaid AN, Abualhasan M, Qaddumi A, Jodeh S. Development of film coated atrovastatin calcium tablet using Opadry-OY. Int J Drug Deliv. 2012;4:229–35.

    CAS  Google Scholar 

  16. Zaid AN, Natour S, Qaddomi A, Ghoush AA. Formulation and in vitro and in vivo evaluation of film-coated montelukast sodium tablets using Opadry® yellow 20A82938 on an industrial scale. Drug Des Devel Ther. 2013;7:83–91.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yoshino H, Yamashita K, Iwao Y, Noguchi S, Itai S. Quantitative appearance inspection for film coated tablets. Chem Pharm Bull. 2016;64(8):1226–9.

    Article  CAS  PubMed  Google Scholar 

  18. Sheth N, Shan S, Potdar A, Shah A. Studies in optimization of aqueous film coating parameters. Int J Pharm Sci Nano. 2009;2(3):621–6.

    CAS  Google Scholar 

  19. Imamura M, Nishina S, Irisawa A, Yamashita T, Kato E. 3D imaging and analysis system using terahertz waves. In: IEEE Int. Conf. IR. MMW. THz. Waves. 2010. https://doi.org/10.1109/ICIMW.2010.5612459.

  20. Wataru M, Hiroyuki Y, Yoshifumi K, Kazunari Y, Keiji I, Kazuhiro S, et al. Applying terahertz technology for nondestructive detection of crack initiation in a film-coated layer on a swelling tablet. Results Pharm Sci. 2012;2:29–37.

    Article  Google Scholar 

  21. Dohi M, Momose W, Yoshino H, Hara Y, Yamashita K, Hakomori T, et al. Application of terahertz pulse imaging as PAT tool for non-destructive evaluation of film-coated tablets under different manufacturing conditions. J Pharm Biomed Anal. 2016;119:104–13.

    Article  CAS  PubMed  Google Scholar 

  22. Seitavuopio P, Heinämäki J, Rantanen J, Yliruusi J. Monitoring tablet surface roughness during the film coating process. AAPS PharmSciTech. 2006;7(2):E1–6.

    Article  PubMed Central  Google Scholar 

  23. Ruotsalainen M, Heinämäki J, Taipale K, Yliruusi J. Influence of the aqueous film coating process on the properties and stability of tablets containing a moisture-labile drug. Pharm Dev Technol. 2003;8(4):443–51.

    Article  CAS  PubMed  Google Scholar 

  24. May RK, Evans MJ, Zhong S, Warr I, Gladden LF, Shen Y, et al. Terahertz in-line sensor for direct coating thickness measurement of individual tablets during film coating in real-time. J Pharm Sci. 2011;100(4):1535–44.

    Article  CAS  PubMed  Google Scholar 

  25. Lin H, Dong Y, Markl D, Zhang Z, Shen Y, Zeitler JA. Pharmaceutical film coating catalog for spectral domain optical coherence tomography. J Pharm Sci. 2017;106:3171–6.

    Article  CAS  PubMed  Google Scholar 

  26. Patel JK, Shah AM, Sheth NR. Aqueous-based film coating of tablets: study the effect of critical process parameters. Int J PharmTech Res. 2009;1(2):235–40.

    CAS  Google Scholar 

  27. Page S, Baumann KH, Kleinebudde P. Mathematical modeling of an aqueous film coating process in a Bohle lab-coater, part 1: development of the model. AAPS PharmSciTech. 2006;7(2):42.

    Google Scholar 

  28. Page S, Baumann KH, Kleinebudde P. Mathematical modeling of an aqueous film coating process in a Bohle lab-coater, part 2: application of the model. AAPS PharmSciTech. 2006;7(2):43.

    Google Scholar 

  29. Suzuki Y, Suzuki T, Minami H, Terada K. A novel scale up model for prediction of pharmaceutical film coating process parameters. Chem Pharm Bull. 2016;64:215–21.

    Article  CAS  PubMed  Google Scholar 

  30. Pandey P, Katakdaunde M, Turton R. Modeling weight variability in a pan coating process using Monte Carlo simulations. AAPS PharmSciTech. 2006;7(4):83.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeru Itai.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshino, H., Hara, Y., Dohi, M. et al. A Scale-up Approach for Film Coating Process Based on Surface Roughness as the Critical Quality Attribute. AAPS PharmSciTech 19, 1243–1253 (2018). https://doi.org/10.1208/s12249-017-0940-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-017-0940-9

KEY WORDS

Navigation