Skip to main content
Log in

Proliposome Powders for the Generation of Liposomes: the Influence of Carbohydrate Carrier and Separation Conditions on Crystallinity and Entrapment of a Model Antiasthma Steroid

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Formulation effects on the entrapment of beclometasone dipropionate (BDP) in liposomes generated by hydration of proliposomes were studied, using the high-density dispersion medium deuterium oxide in comparison to deionized water (DW). Proliposomes incorporating BDP (2 mol% of the lipid phase consisting of soya phosphatidylcholine (SPC) and cholesterol; 1:1) were manufactured, using lactose monohydrate (LMH), sorbitol or d-mannitol as carbohydrate carriers (1:5 w/w lipid to carrier). Following hydration of proliposomes, separation of BDP-entrapped liposomes from the unentrapped (free) BDP at an optimized centrifugation duration of 90 min and a centrifugation force of 15,500g were identified. The dispersion medium was found to have a major influence on separation of BDP-entrapped liposomes from the unentrapped drug. Entrapment efficiency values were higher than 95% as estimated when DW was used. By contrast, the entrapment efficiency was 19.69 ± 5.88, 28.78 ± 4.69 and 34.84 ± 3.62% upon using D2O as a dispersion medium (for LMH-, sorbitol- and d-mannitol-based proliposomes, respectively). The similarity in size of liposomes and BDP crystals was found to be responsible for co-sedimentation of liposomes and free BDP crystals upon centrifugation in DW, giving rise to the falsely high entrapment values estimated. This was remedied by the use of D2O as confirmed by light microscopy, nuclear magnetic resonance (1HNMR), X-ray diffraction (XRD) and entrapment studies. This study showed that carrier type has a significant influence on the entrapment of BDP in liposomes generated from proliposomes, and using D2O is essential for accurate determination of steroid entrapment in the vesicles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Moghassemi S, Hadjizadeh A, Omidfar K. Formulation and characterization of bovine serum albumin-loaded niosome. AAPS PharmSciTech. 2016 (in press).

  2. Zheng J, Wan Y, Elhissi A, Zhang Z, Sun X. Targeted paclitaxel delivery to tumors using cleavable PEG-conjugated solid lipid nanoparticles. Pharm Res. 2014;31:2220–33.

    Article  CAS  PubMed  Google Scholar 

  3. Mody N, Tekade RK, Mehra NK, Chopdey P, Jain NK. Dendrimer, liposomes, carbon nanotubes and PLGA nanoparticles: one platform assessment of drug delivery potential. AAPS PharmSciTech. 2014;15:388–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mehra NK, Jain K, Jain NK. Design of multifunctional nanocarriers for delivery of anti-cancer therapy. Curr Pharm Des. 2015;21:6157–64.

    Article  CAS  PubMed  Google Scholar 

  5. Elhissi AM, Ahmed W, Hassan IU, Dhanak VR, D'Emanuele A. Carbon nanotubes in cancer therapy and drug delivery. J Drug Deliv. 2012 837327.

  6. Yao HJ, Sun L, Liu Y, Jiang S, Pu Y, Li J, Zhang Y. Monodistearoylphosphatidylethanolamine-hyaluronic acid functionalization of single-walled carbon nanotubes for targeting intracellular drug delivery to overcome multidrug resistance of cancer cells. Carbon. 2016;96:362–76.

    Article  CAS  Google Scholar 

  7. Khan I, Elhissi A, Shah M, Alhnan MA, Waqar A. Liposome-based carrier systems and devices used for pulmonary drug delivery. In: Davim JP, editor. Biomaterial and medical tribology research and development. Cambridge, UK: Woodhead Publishing Limited; 2013. p. 395–442.

    Chapter  Google Scholar 

  8. Chen R, Li R, Liu Q, Bai C, Qin B, Ma Y, et al. Ultradeformable liposomes: a novel vesicular carrier for enhanced transdermal delivery of procyanidins: effect of surfactants on the formation, stability, and transdermal delivery. AAPS PharmSciTech. 2016 (in press).

  9. Elhissi A. Liposomes for pulmonary drug delivery: the role of formulation and inhalation device design. Curr Pharm Des. 2016 (in press).

  10. Sakagami M, Kinoshita W, Sakon K, J-i S, Makino Y. Mucoadhesive beclomethasone microspheres for powder inhalation: their pharmacokinetics and pharmacodynamics evaluation. J Cont Rel. 2002;80:207–18.

    Article  CAS  Google Scholar 

  11. Smola M, Vandamme T, Sokolowski A. Nanocarriers as pulmonary drug delivery systems to treat and to diagnose respiratory and non respiratory diseases. Int J Nanomedicine. 2008;3:1–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Terzano C, Allegra L, Alhaique F, Marianecci C, Carafa M. Non-phospholipid vesicles for pulmonary glucocorticoid delivery. Eur J Pharm Biopharm. 2005;59:57–62.

    Article  CAS  PubMed  Google Scholar 

  13. Elhissi A, Hidayat K, Phoenix DA, Mwesigwa E, Crean S, Ahmed W, Faheem A, Taylor KM. Air-jet and vibrating-mesh nebulization of niosomes generated using a particulate-based proniosome technology. Int J Pharm. 2013;444:193–9.

    Article  CAS  PubMed  Google Scholar 

  14. Jaafar-Maalej C, Andrieu V, Elaissari A, Fessi H. Beclomethasone-loaded lipidic nanocarriers for pulmonary drug delivery: preparation, characterization and in vitro drug release. J Nanosci Nanotechnol. 2011;11:1841–51.

    Article  CAS  PubMed  Google Scholar 

  15. Nasr M, Najlah M, D’Emanuele A, Elhissi A. PAMAM dendrimers as aerosol drug nanocarriers for pulmonary delivery via nebulization. Int J Pharm. 2014;461:242–50.

    Article  CAS  PubMed  Google Scholar 

  16. Gaber NN, Darwis Y, Peh KK, Tan YT. Characterization of polymeric micelles for pulmonary delivery of beclomethasone dipropionate. J Nanosci Nanotechnol. 2006;6:3095–101.

    Article  CAS  PubMed  Google Scholar 

  17. Xu L-M, Zhang Q-X, Zhou Y, Zhao H, Wang J-X, Chen J-F. Engineering drug ultrafine particles of beclomethasone dipropionate for dry powder inhalation. Int J Pharm. 2012;436:1–9.

    Article  CAS  PubMed  Google Scholar 

  18. Barnes N, van Noord JA, Brindicci C, Lindemann L, Varoli G, Perpiña M, Guastalla D, Casula D, Patel S, Chanez P, FACTO (Foster® As Complete Treatment Option) Study Group. Stepping-across controlled asthmatic patients to extrafine beclometasone/formoterol combination. Pulm Pharmacol Ther. 2013;26:555–61.

    Article  CAS  PubMed  Google Scholar 

  19. Saari M, Vidgren MT, Koskinen MO, Turjanmaa VMH, Nieminen MM. Pulmonary distribution and clearance of two beclomethasone liposome formulations in healthy volunteers. Int J Pharm. 1999;181:1–9.

    Article  CAS  PubMed  Google Scholar 

  20. Darwis Y, Kellaway IW. Nebulisation of rehydrated freeze-dried beclomethasone dipropionate liposomes. Int J Pharm. 2001;215:113–21.

    Article  CAS  PubMed  Google Scholar 

  21. Subramanian S, Khan I, Korale O, Alhnan MA, Ahmed W, Najlah M, Taylor KM, Elhissi A. A simple approach to predict the stability of phospholipid vesicles to nebulization without performing aerosolization studies. Int J Pharm. 2016;502:18–27.

    Article  CAS  PubMed  Google Scholar 

  22. Payne NI, Timmins P, Ambrose CV, Ward MD, Ridgway F. Proliposomes: a novel solution to an old problem. J Pharm Sci. 1986;75:325–9.

    Article  CAS  PubMed  Google Scholar 

  23. Payne NI, Browning I, Hynes CA. Characterization of proliposomes. J Pharm Sci. 1986;75:330–3.

    Article  CAS  PubMed  Google Scholar 

  24. Elhissi A, Taylor KMG. Delivery of liposomes generated from pro liposomes using air-jet, ultrasonic and vibrating-mesh nebulisers. J Drug Del Sci Technol. 2005;15:261–5.

    Article  CAS  Google Scholar 

  25. Elhissi A, Gill H, Ahmed W, Taylor K. Vibrating-mesh nebulization of liposomes generated using an ethanol-based proliposome technology. J Liposome Res. 2011;21:173–80.

    Article  CAS  PubMed  Google Scholar 

  26. Desai TR, Wong JP, Hancock RE, Finlay WH. A novel approach to the pulmonary delivery of liposomes in dry powder form to eliminate the deleterious effects of milling. J Pharm Sci. 2002;91:482–91.

    Article  CAS  PubMed  Google Scholar 

  27. Rojanarat W, Changsan N, Tawithong E, Pinsuwan S, Chan HK, Srichana T. Isoniazid proliposome powders for inhalation-preparation, characterization and cell culture studies. Int J Mol Sci. 2011;12:4414–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Waldrep JC, Keyhani K, Black M, Knight V. Operating characteristics of 18 different continuous-flow jet nebulizers with beclomethasone dipropionate liposome aerosol. Chest. 1994;105:106–10.

    Article  CAS  PubMed  Google Scholar 

  29. Batavia R, Taylor KMG, Craig DQM, Thomas M. The measurement of beclomethasone dipropionate entrapment in liposomes: a comparison of a microscope and an HPLC method. Int J Pharm. 2001;212:109–19.

    Article  CAS  PubMed  Google Scholar 

  30. Ohnishi N, Tomida H, Ito Y, Tahara K, Takeuchi H. Characterization of a doxorubicin liposome formulation by a novel in vitro release test methodology using column-switching high-performance liquid chromatography. Chem Pharm Bull (Tokyo). 2014;62:538–44.

    Article  CAS  Google Scholar 

  31. Ohnishi N, Tanaka S, Tahara K, Takeuchi H. Characterization of insulin-loaded liposome using column-switching HPLC. Int J Pharm. 2015;479:302–5.

    Article  CAS  PubMed  Google Scholar 

  32. Deshpande NM, Gangrade MG, Kekare MB, Vaidya VV. Determination of free and liposomal amphotericin B in human plasma by liquid chromatography-mass spectroscopy with solid phase extraction and protein precipitation techniques. J Chromatogr B Analyt Technol Biomed Life Sci. 2010;878:315–26.

    Article  CAS  PubMed  Google Scholar 

  33. Stone NR, Bicanic T, Salim R, Hope W. Liposomal amphotericin B (AmBisome(®)): a review of the pharmacokinetics, pharmacodynamics, clinical experience and future directions. Drugs. 2016;76:485–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Isailović BD, Kostić IT, Zvonar A, Đorđević VB, Gašperlin M, Nedović VA, Bugarskia BM. Resveratrol loaded liposomes produced by different techniques. Innovative Food Sci Emerg Technol. 2013;19:181–9.

    Article  Google Scholar 

  35. Cadena PG, Pereira MA, Cordeiro RBS, Cavalcanti IMF, Netoc BB, Pimentel MCCB, Filhoa JLL, Silvab VL, Santos-Magalhãesa NS. Nanoencapsulation of quercetin and resveratrol into elastic liposomes. Biochim et Biophys Acta (BBA) - Biomembranes. 2013;1828:309–16.

    Article  CAS  Google Scholar 

  36. Khan I, Yousaf S, Subramanian S, Korale O, Alhnan MA, Ahmed W, Taylor KM, Elhissi A. Proliposome powders prepared using a slurry method for the generation of beclometasone dipropionate liposomes. Int J Pharm. 2015;496:342–50.

    Article  CAS  PubMed  Google Scholar 

  37. Elhissi AM, O’Neill MAA, Roberts SA, Taylor KMG. A calorimetric study of dimyristoylphosphatidylcholine phase transitions and steroid–liposome interactions for liposomes prepared by thin film and proliposome methods. Int J Pharm. 2006;320:124–30.

    Article  CAS  PubMed  Google Scholar 

  38. Stewart JCM. Colorimetric determination of phospholipids with ammonium ferrothiocyanate. Anal Biochem. 1980;104:10–4.

    Article  CAS  PubMed  Google Scholar 

  39. Newman AW, Vitez IM, Mueller RL, Kiesnowski CC, Findlay WP, Rodriguez C, et al. Sorbitol. In: Harry GB, editor. Analytical profiles of drug substances and excipients, vol 26. Academic Press; 1999, p. 459–502.

  40. Elhissi AMA, Ahmed W, McCarthy D, Taylor KMG. A study of size, microscopic morphology, and dispersion mechanism of structures generated on hydration of proliposomes. J Dispers Sci Technol. 2011;33:1121–6.

    Article  Google Scholar 

  41. Meyer VR. Practical high-performance liquid chromatography. 5th ed. John Wiley & Sons, Inc: Switzerland; 2010. 412 p.

    Book  Google Scholar 

  42. Row RC, Sheskey PJ, Owen SC. Handbook of pharmaceutical excipients. 5th ed. London, Uk: Pharmaceutical Press; 2006. p. 385–748.

    Google Scholar 

  43. Vecellio L, Abdelrahim ME, Montharu J, Galle J, Diot P, Dubus J-C. Disposable versus reusable jet nebulizers for cystic fibrosis treatment with tobramycin. J Cyst Fibros. 2011;10:86–92.

    Article  PubMed  Google Scholar 

  44. Kushner DJ, Baker A, Dunstall TG. Pharmacological uses and perspectives of heavy water and deuterated compounds. Can J Physiol Pharmacol. 1999;77:79–88.

    Article  CAS  PubMed  Google Scholar 

  45. Sharma R, Bisen D, CShukla U, Sharma B. X-ray diffraction: a powerful method of characterizing nanomaterials. Recent Res Sci Technol. 2012;4:77–9.

    CAS  Google Scholar 

  46. Radhakrishnan R. Novel liposome composition for sustained release of steroidal drugs. 1991. US Patent 5043165 A.

  47. Jaafar-Maalej C, Charcosset C, Fessi H. A new method for liposome preparation using a membrane contactor. J Liposome Res. 2011;21:213–20.

    Article  CAS  PubMed  Google Scholar 

  48. Kulkarni SB, Vargha-Butler EI. Study of liposomal drug delivery systems 2. Encapsulation efficiencies of some steroids in MLV liposomes. Colloids Surf B. 1995;4:77–85.

    Article  CAS  Google Scholar 

  49. Fildes FJT, Oliver JE. Interaction of cortisol-21-palmitate with liposomes examined by differential scanning calorimetry. J Pharm Pharmacol. 1978;30:337–42.

    Article  CAS  PubMed  Google Scholar 

  50. Arrowsmith M, Hadgraft J, Kellaway IW. The interaction of cortisone esters with liposomes as studied by differential scanning calorimetry. Int J Pharm. 1983;16:305–18.

    Article  CAS  Google Scholar 

  51. Carlson JC, Gruber MY, Thompson JE. A study of the interaction between progesterone and membrane lipids. Endocrinology. 1983;113:190–4.

    Article  CAS  PubMed  Google Scholar 

  52. Veiro JA, Nambi P, Herold LL, Rowe ES. Effect of n-alcohols and glycerol on the pretransition of dipalmitoylphosphatidylcholine. Biochim Biophys Acta. 1987;900:230–8.

    Article  CAS  PubMed  Google Scholar 

  53. Elhissi AM, Giebultowicz J, Stec AA, Wroczynski P, Ahmed W, Alhnan MA, Phoenix D, Taylor KM. Nebulization of ultradeformable liposomes: the influence of aerosolization mechanism and formulation excipients. Int J Pharm. 2012;436:519–26.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Lipoid, Switzerland, for supplying us with soya phosphatidylcholine (SPC, Lipoid S-100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelbary Elhissi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, I., Yousaf, S., Subramanian, S. et al. Proliposome Powders for the Generation of Liposomes: the Influence of Carbohydrate Carrier and Separation Conditions on Crystallinity and Entrapment of a Model Antiasthma Steroid. AAPS PharmSciTech 19, 262–274 (2018). https://doi.org/10.1208/s12249-017-0793-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-017-0793-2

KEY WORDS

Navigation