Skip to main content

Advertisement

Log in

Optimization of PEGylation Conditions for BSA Nanoparticles Using Response Surface Methodology

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Chemical coupling of polyethylene glycol (PEG) to proteins or particles (PEGylation), prolongs their circulation half-life by greater than 50-fold, reduces their immunogenicity, and also promotes their accumulation in tumors due to enhanced permeability and retention effect. Herein, phase separation method was used to prepare bovine serum albumin (BSA) nanoparticles. PEGylation of BSA nanoparticles was performed by SPA activated mPEG through their free amino groups. Effect of process variables on PEGylation efficiency of BSA nanoparticles was investigated and optimized through response surface methodology with the amount of free amino groups as response. Optimum conditions was found to be 32.5 g/l of PEG concentration, PEG-nanoparticle incubation time of 10 min, incubation temperature of 27°C, and pH of 7 for 5 mg of BSA nanoparticles in 1 mL phosphate buffer. Analysis of data showed that PEG concentration had the most noticeable effect on the amount of PEGylated amino groups, but pH had the least. Mean diameter and zeta potential of PEGylated nanoparticles under these conditions were 217 nm and −14 mV, respectively. In conclusion, PEGylated nanoparticles demonstrated reduction of the negative surface charge compared to the non modified particles with the zeta potential of −31.7 mV. Drug release from PEGylated nanoparticles was almost slower than non-PEGylated ones, probably due to existence of a PEG layer around PEGylated particles which makes an extra resistance in opposition to drug diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

REFERENCES

  1. Muller BG, Leuenberger H, Kissel T. Albumin nanospheres as carriers for passive drug targeting: an optimized manufacturing technique. Pharm Res. 1996;13:32–7.

    Article  CAS  PubMed  Google Scholar 

  2. Patil GV. Biopolymer albumin for diagnosis and in drug delivery. Drug Dev Res. 2003;58:219–47.

    Article  CAS  Google Scholar 

  3. Merodio M, Arnedo A, Renedo MJ, Irache JM. Ganciclovir-loaded albumin nanoparticles: characterization and in vitro release. Eur J Pharm Sci. 2001;12:251–9.

    Article  CAS  PubMed  Google Scholar 

  4. Merodio M, Irache JM, Valamanesh F, Mirshahi M. Ocular disposition and tolerance of ganciclovir-loaded albumin nanoparticles after intravitreal injection in rats. Biomaterials. 2002;23:1587–94.

    Article  CAS  PubMed  Google Scholar 

  5. Lin W, Garnett MC, Davis SS, Schacht E, Ferruti P, Illum L. Preparation and characterization of rose Bengal-loaded surface-modified albumin nanoparticles. J Control Release. 2001;71:117–26.

    Article  CAS  PubMed  Google Scholar 

  6. Wartlick H, Michaelis K, Balthasar S, Strebhardt K, Kreuter J, Langer K. Highly specific HER2-mediated cellular uptake of antibody-modified nanoparticles in tumour cells. J Drug Target. 2004;12:461–71.

    Article  CAS  PubMed  Google Scholar 

  7. Dreis S, Rothweiler F, Michaelis M, Cinatl J Jr, Kreuter J, Langer K. Preparation, characterization and maintenance of drug efficacy of doxorubicin-loaded human serum albumin (HAS) nanoparticles. Int J Pharm. 2007;341:207–14.

    Article  CAS  PubMed  Google Scholar 

  8. Weber C, Reiss S, Langer K. Preparation of surface modified protein nanoparticles by introduction of sulfhydryl groups. Int J Pharm. 2000;211:67–78.

    Article  CAS  PubMed  Google Scholar 

  9. Vonarbourg A, Passirani C, Saulnier P, Benoit JP. Parameters influencing the stealthiness of colloidal drug delivery systems. Biomaterials. 2006;27:4356–73.

    Article  CAS  PubMed  Google Scholar 

  10. Dumitriu S. Polymeric biomaterials. New York: Marcel Dekker; 2001.

    Book  Google Scholar 

  11. Stolnik S, Illum L, Davis S. Long-circulating microparticle drug carriers. Adv Drug Deliv Rev. 1995;16:195–214.

    Article  CAS  Google Scholar 

  12. Pasut G, Veronse FM. Polymer-drug conjugation, recent achievements and general strategies. Prog Polym Sci. 2007;32:933–61.

    Article  CAS  Google Scholar 

  13. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and EPR effect in macromolecular therapeutics, a review. J Control Release. 2000;65:271–84.

    Article  CAS  PubMed  Google Scholar 

  14. Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul. 2001;41:189–207.

    Article  CAS  PubMed  Google Scholar 

  15. Gabizon A. Liposome circulation time and targeting: implication for cancer chemotherapy. Adv Drug Deliv Rev. 1995;16:285–94.

    Article  CAS  Google Scholar 

  16. Torchilin VP. Multifunctional nanocarriersm. Adv Drug Deliv Rev. 2006;58:1532–55.

    Article  CAS  PubMed  Google Scholar 

  17. Klibanov AL, Maruyama K, Torichilin VP, Huang L. Amphipatic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett. 1990;268:235–8.

    Article  CAS  PubMed  Google Scholar 

  18. Maruyama K, Yuda T, Okamoto A, Ishikura C, Kojima S, Iwatsuru M. Effect of molecular weight in amphipathic polyethyleneglyco on prolonging the circulation time of large unilamellar liposomes. Chem Pharm Bull. 1991;39:1620–2.

    CAS  PubMed  Google Scholar 

  19. Senior J, Delgado C, Fisher D, Tilcock C, Gregoriadis G. Influence of surface hydrophilicity of liposomes on their interaction with plasma protein and clearance from the circulation: studies with poly (ethylene glycol)-coated vesicles. Biochim Biophys. 1991;1066:77–82.

    Article  Google Scholar 

  20. Allen TM, Hanse C, Martin F, Redemann C, Young YA. Liposomes containing synthetic lipid derivatives of poly (ethylene glycol) show prolonged circulation half-lives in vivo. Biochem Biophys. 1991;1066:29–36.

    Article  CAS  Google Scholar 

  21. Papadjopoulos D, Allen TM, Gabizon A, Mayhew E, Matthay K, Huang SK, et al. Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficiency. Proc Natl Acad Sci U S A. 1991;88:11460–4.

    Article  Google Scholar 

  22. Veronese FM, Pasut G. PEGylation, successful approach to drug delivery. Drug Discov Today. 2005;10(21):1451–8.

    Article  CAS  PubMed  Google Scholar 

  23. Naper DH. Polymeric stabilization of colloidal dispersion. New York: Academic; 1983.

    Google Scholar 

  24. Senior J, Delgado C, Fisher D, Tilcock C, Gregoriadis G. Influence of surface hydrophilicity of liposomes on their interaction with plasma protein and clearance from the circulation: studies with poly (ethylene glycol)-coated vesicles. Biochem Biophys. 1991;1062:77–82.

    Article  CAS  Google Scholar 

  25. Woodle MC. Surface-modified liposomes: assessment and characterization for increased stability and prolonged blood circulation. Chem Phys Lipids. 1993;64:249–62.

    Article  CAS  PubMed  Google Scholar 

  26. Allen TM. The use of glycolipids and hydrophilic polymers in avoiding rapid uptake of liposomes by the mononuclear phagocyte system. Adv Drug Deliv Rev. 1994;13:285–309.

    Article  CAS  Google Scholar 

  27. Chonn A, Semple SC, Cullis PR. Separation of large unilamellar liposomes from blood components by a spain column procedure: toward identifying plasma proteins which mediate liposome clearance in vivo. Biochem Biophys. 1991;1070:215–22.

    Article  CAS  Google Scholar 

  28. Chonn A, Semple SC, Cullis PR. Association of blood proteins with large unilamellar liposomes in vivo: relation to circulation lifetimes. J Biol Chem. 1992;267:18759–65.

    CAS  PubMed  Google Scholar 

  29. Lasic DD, Martin FG, Gabizon A, Huang SK, Papahadjopoulos D. Sterically stabilized liposomes: a hypothesis on the molecular origin of the extended circulation times. Biochem Biophys. 1991;1070:187–92.

    Article  CAS  Google Scholar 

  30. Senior JH. Fate and behavior of liposomes in vivo: a review of controlling factors. CRC Crit Rev Ther Drug Carr Syst. 1987;3:123–93.

    CAS  Google Scholar 

  31. Langer K, Balthasar S, Vogel V, Dinauer N, Von Briesen H, Schubert D. Optimization of the preparation process for human serum albumin (HSA) nanoparticles. Int J Pharm. 2003;257:169–80.

    Article  CAS  PubMed  Google Scholar 

  32. Maghsoudi A, Shojaosadati SA, Vasheghani Farahani E. 5-fluorouracil-loaded BSA nanoparticles: formulation optimization and in vitro release study. AAPS PharmSciTech. 2008;9:1092–6.

    Article  CAS  PubMed  Google Scholar 

  33. Habeeb AFSA. Determination of free amino groups of protein by trinitrobenzenesulfonic acid. Anal Biochem. 1966;14:328–38.

    Article  CAS  PubMed  Google Scholar 

  34. Edwards F, Andry MC, Levy MC. Determination of free amino groups content of serum albumin microcapsules using trinitrobenzenesulfonic acid: effect of variations in polycondensation. Int J Pharm. 1993;96:85–90.

    Article  Google Scholar 

  35. Edwards F, Andry MC, Levy MC. Determination of free amino groups content of serum albumin microcapsules: effect of variations in reaction time and in terephthaloyl chloride concentration. Int J Pharm. 1994;103:253–7.

    Article  Google Scholar 

  36. Harris JM. Advanced PEGylation: polyethylene glycol and derivatives for advanced PEGylation, Nektar Transforming Therapeutic Catalog. 2006.

  37. Niemeyer CM. Bioconjugation protocols. New Jersey: Humana; 2004.

    Book  Google Scholar 

  38. Montgomery DC. Design and analysis of experiments. New York: Wiley; 2005.

    Google Scholar 

  39. Minitab Inc. Minitab software version 15. http//minitab.com. (Accessed 10/03/09).

Download references

ACKNOWLEDGMENTS

We appreciate partial support of this research by the Iranian National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Abbas Shojaosadati.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kouchakzadeh, H., Shojaosadati, S.A., Maghsoudi, A. et al. Optimization of PEGylation Conditions for BSA Nanoparticles Using Response Surface Methodology. AAPS PharmSciTech 11, 1206–1211 (2010). https://doi.org/10.1208/s12249-010-9487-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-010-9487-8

KEY WORDS

Navigation