Skip to main content
Log in

Sustained Liver Targeting and Improved Antiproliferative Effect of Doxorubicin Liposomes Modified with Galactosylated Lipid and PEG-Lipid

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

In this study, a cleavable PEG-lipid (methoxypolyethyleneglycol 2000-cholesteryl hemisuccinate, PEG2000-CHEMS) linked via ester bond and galactosylated lipid ((5-cholesten-3β-yl) 4-oxo-4-[2-(lactobionyl amido) ethylamido] butanoate, CHS-ED-LA) were used to modify doxorubicin (DOX) liposome. DOX was encapsulated into conventional liposomes (CL), galactosylated liposomes (modified with CHS-ED-LA, GalL), pegylated liposomes (modified with PEG2000-CHEMS, PEG-CL), and pegylated galactosylated liposomes (modified with CHS-ED-LA and PEG2000-CHEMS, PEG-GalL) using an ammonium sulfate gradient loading method and then intravenously injected to normal mice. Both PEG-GalL DOX and GalL DOX gave relatively high overall drug targeting efficiencies to liver ((T e)liver) and were mainly taken up by hepatocyte. However, PEG-GalL DOX showed unique “sustained targeting” characterized by slowed transfer of DOX to liver and reduced peak concentrations in the liver. The biodistribution and antitumor efficacy of various DOX preparations were studied in hepatocarcinoma 22 (H22) tumor-bearing mice. The inhibitory rate of PEG-GalL DOX to H22 tumors was up to 94%, significantly higher than that of PEG-CL DOX, GalL DOX, CL DOX, and free DOX, although the tumor distribution of DOX revealed no difference between PEG-GalL DOX and PEG-CL DOX. Meanwhile, the gradual increase in the liver DOX concentration due to the sustained uptake of PEG-GalL DOX formulations resulted in lower damage to liver. In conclusion, the present investigation indicated that double modification of liposomes with PEG2000-CHEMS, and CHS-ED-LA represents a potentially advantageous strategy in the therapy of liver cancers or other liver diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ashwell G, Harford J. Carbohydrate-specific receptors of the liver. Annu Rev Biochem. 1982;51:531–54.

    Article  CAS  PubMed  Google Scholar 

  2. Wu J, Nantz MH, Zern MA. Targeting hepatocytes for drug and gene delivery: emerging novel approaches and application. Front Biosci. 2002;7:d717–25.

    Article  CAS  PubMed  Google Scholar 

  3. Mandal AK, Das S, Basu MK, Chakrabarti RN, Das N. Hepatoprotective activity of liposomal flavonoid against arsenite-induced liver fibrosis. Pharmacol Exp Ther. 2007;320:994–1001.

    Article  CAS  Google Scholar 

  4. Sato A, Takagi M, Shimamoto A, Kawakami S, Hashida M. Small interfering RNA delivery to the liver by intravenous administration of galactosylated cationic liposomes in mice. Biomaterials. 2007;28:1434–42.

    Article  CAS  PubMed  Google Scholar 

  5. Managit C, Kawakami S, Yamashita F, Hashida M. Effect of galactose density on asialoglycoprotein receptor-mediated uptake of galactosylated liposomes. J Pharm Sci. 2005;94:2266–75.

    Article  CAS  PubMed  Google Scholar 

  6. Murao A, Nishikawa M, Managit C, Wong J, Kawakami S, Yamashita F, et al. Targeting efficiency of galactosylated liposomes to hepatocytes in vivo: effect of lipid composition. Pharm Res. 2002;19:1808–14.

    Article  CAS  PubMed  Google Scholar 

  7. Wang SN, Deng YH, Xu H, Wu HB, Qiu YK, Chen DW. Synthesis of a novel galactosylated lipid and its application to the hepatocyte-selective targeting of liposomal doxorubicin. Eur J Pharm Biopharm. 2006;62:32–8.

    Article  CAS  PubMed  Google Scholar 

  8. Levy G. Targeted drug delivery—some pharmacokinetic considerations. Pharm Res. 1987;4:3–4.

    Article  CAS  PubMed  Google Scholar 

  9. Takino T, Koreeda N, Nomura T, Sakaeda T, Yamashita F, Takakura Y, et al. Control of plasma cholesterol-lowering action of probucol with various lipid carrier systems. Biol Pharm Bull. 1998;21:492–7.

    CAS  PubMed  Google Scholar 

  10. Torchilin VP, Omelyanenko VG, Papisov MI, Bogdanov Jr AA, Trubetskoy VS, Herron JN, et al. Poly(ethylene glycol) on the liposome surface: on the mechanism of polymer-coated liposome longevity. Biochim Biophys Acta. 1994;1195:11–20.

    Article  CAS  PubMed  Google Scholar 

  11. Woodle MC, Lasic DD. Sterically stabilized liposomes. Biochim Biophys Acta. 1992;1113:171–99.

    CAS  PubMed  Google Scholar 

  12. Maruyama K. PEG-immunoliposome. Biosci Rep. 2002;22:251–6.

    Article  CAS  PubMed  Google Scholar 

  13. Gosselin MA, Lee RJ. Folate receptor-targeted liposomes as vectors for therapeutic agents. Biotechnol Annu Rev. 2002;8:103–31.

    Article  CAS  PubMed  Google Scholar 

  14. Cattel L, Ceruti M, Dosio F. From conventional to stealth liposomes: a new frontier in cancer chemotherapy. Tumori. 2003;89:237–49.

    CAS  PubMed  Google Scholar 

  15. Shimada K, Kamps JA, Regts J, Ikeda K, Shiozawa T, Hirota S, et al. Biodistribution of liposomes containing synthetic galactose-terminated diacylglyceryl-poly(ethyleneglycol)s. Biochim Biophys Acta. 1997;1326:329–41.

    Article  CAS  PubMed  Google Scholar 

  16. Gabizon A, Shmeeda H, Horowitz AT, Zalipsky S. Tumor cell targeting of liposome-entrapped drugs with phospholipid-anchored folic acid-PEG conjugates. Adv Drug Deliv Rev. 2004;56:1177–92.

    Article  CAS  PubMed  Google Scholar 

  17. Terada T, Iwai M, Kawakami S, Yamashita F, Hashida M. Novel PEG-matrix metalloproteinase-2 cleavable peptide-lipid containing galactosylated liposomes for hepatocellular carcinoma-selective targeting. J Control Release. 2006;111:333–42.

    Article  CAS  PubMed  Google Scholar 

  18. Xu H, Deng Y, Chen D, Hong W, Lu Y, Dong X. Esterase-catalyzed dePEGylation of pH-sensitive vesicles modified with cleavable PEG-lipid derivatives. J Control Release. 2008;130:238–45.

    Article  CAS  PubMed  Google Scholar 

  19. Lasic DD, Frederick PM, Stuart MCA, Barenholz Y, McIntosh TJ. Gelation of liposome interior: a novel method for drug encapsulation. FEBS Lett. 1992;312:255–8.

    Article  CAS  PubMed  Google Scholar 

  20. Mayer LD, Tai LC, Ko DS, Masin D, Ginsberg RS, Cullis PR, et al. Influence of vesicle size, lipid composition, and drug-to-lipid ratio on the biological activity of liposomal doxorubicin in mice. Cancer Res. 1989;49:5922–30.

    CAS  PubMed  Google Scholar 

  21. Gupta PK, Hung CT. Quantitative evaluation of targeted drug delivery systems. Int J Pharm. 1989;56:217–26.

    Article  CAS  Google Scholar 

  22. Valle JW, Dangoor A, Beech J, Sherlock DJ, Lee SM, Scarffe JH, et al. Treatment of inoperable hepatocellular carcinoma with pegylated liposomal doxorubicin (PLD): results of a phase II study. Br J Cancer. 2005;92:628–30.

    Article  CAS  PubMed  Google Scholar 

  23. Lind PA, Naucler G, Holm A, Gubanski M, Svensson C. Efficacy of pegylated liposomal doxorubicin in patients with advanced hepatocellular carcinoma. Acta Oncol. 2007;46:230–3.

    Article  CAS  PubMed  Google Scholar 

  24. Hopewel JW, Duncan R, Wilding D, Chakrabarti K. Preclinical evaluation of the cardiotoxicity of PK2: a novel HPMA copolymer-doxorubicin-galactosamine conjugate antitumour agent. Hum Exp Toxicol. 2001;20:461–70.

    Article  CAS  PubMed  Google Scholar 

  25. Fiume L, Baglioni M, Bolondi L, Farina C, Di Stefano G. Doxorubicin coupled to lactosaminated human albumin: a hepatocellular carcinoma targeted drug. Drug Discov Today. 2008;13:1002–9.

    Article  CAS  PubMed  Google Scholar 

  26. Managit C, Kawakami S, Nishikawa M, Yamashita F, Hashida M. Targeted and sustained drug delivery using PEGylated galactosylated liposomes. Int J Pharm. 2003;266:77–84.

    Article  CAS  PubMed  Google Scholar 

  27. D'Souza AJ, Topp EM. Release from polymeric prodrugs: linkages and their degradation. J Pharm Sci. 2004;93:1962–79.

    Article  PubMed  Google Scholar 

  28. Lee BS, Yuan X, Xu Q, McLafferty FS, Petersen BA, Collette JC, et al. Stimuli-responsive antioxidant nanoprodrugs of NSAIDs. Int J Pharm. 2009;372:112–4.

    Article  CAS  PubMed  Google Scholar 

  29. Virgolini I, Müller C, Klepetko W, Angelberger P, Bergmann H, O'Grady J, et al. Decreased hepatic function in patients with hepatoma or liver metastasis monitored by a hepatocyte specific galactosylated radioligand. Br J Cancer. 1990;61:937–41.

    CAS  PubMed  Google Scholar 

  30. Gabizon A, Martin F. Polyethylene glycol-coated (pegylated) liposomal doxorubicin. Rationale for use in solid tumours. Drugs. 1997;54(S4):15–21.

    Article  CAS  PubMed  Google Scholar 

  31. Wu NZ, Da D, Rudoll TL, Needham D, Whorton AR, Dewhirst MW. Increased microvascular permeability contributes to preferential accumulation of stealth liposomes in tumor tissue. Cancer Res. 1993;53:3765–70.

    CAS  PubMed  Google Scholar 

  32. Park JW, Hong K, Kirpotin DB, Meyer O, Papahadjopoulos D, Benz CC. Anti-HER2 immunoliposomes for targeted therapy of human tumors. Cancer Lett. 1997;118:153–60.

    Article  CAS  PubMed  Google Scholar 

  33. Kirpotin DB, Drummond DC, Shao Y, Shalaby MR, Hong K, Nielsen UB, et al. Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res. 2006;66:6732–40.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-hui Deng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., Xu, H., Xu, J. et al. Sustained Liver Targeting and Improved Antiproliferative Effect of Doxorubicin Liposomes Modified with Galactosylated Lipid and PEG-Lipid. AAPS PharmSciTech 11, 870–877 (2010). https://doi.org/10.1208/s12249-010-9450-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-010-9450-8

Key words

Navigation