Skip to main content
Log in

Development and Optimization of Micro/Nanoporous Osmotic Pump Tablets

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Micro/nanoporous osmotic pump tablets coated with cellulose acetate containing polyvinylpyrolidone (PVP) as pore formers were fabricated. Propranolol hydrochloride was used as a model drug in this study. Formulation optimization based on USP 31 requirements was conducted following a central composite design using a two-level factorial plan involving two membrane variables (pore former and coating levels). Effect of molecular weight of pore former (PVP K30 and PVP K90) was also evaluated. Responses of drug release to the variables were analyzed using statistical software (MINITAB 14). Scanning electron microscopy and atomic force microscopy showed that the pores formed by PVP. The drug release was dependent on the molecular weight and concentration of PVP and the level of coating. The results showed that acceptable 12-h profile could be achieved with only specific range of PVP K30-containing membrane at the defined membrane thickness. However, satisfactory 24-h profile could be accomplished by both PVP K30 and PVP K90-containing membrane at the range and membrane thickness tested. Preparation and testing of the optimized formulation showed a good correlation between predicted and observed values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

REFERENCES

  1. Theeuwes F. Elementary osmotic pump. J Pharm Sci. 1975;64(12):1987–91.

    Article  CAS  PubMed  Google Scholar 

  2. Wong PSL, Gupta SK, Stewart BE. Osmotically controlled tablets. In: Rathbone MJ, Hadgraft J, Roberts MS, editors. Modified-release drug delivery technology. New York: Marcel Dekker; 2003. p. 101–14.

    Google Scholar 

  3. Ramakrishna N, Mishra B. Plasticizer effect and comparative evaluation of cellulose acetate and ethylcellulose-HPMC combination coatings as semipermeable membranes for oral osmotic pumps of naproxen sodium. Drug Dev Ind Pharm. 2002;28(4):403–12.

    Article  CAS  PubMed  Google Scholar 

  4. Rani M, Surana R, Sankar C, Mishra B. Development and biopharmaceutical evaluation of osmotic pump tablets for controlled delivery of diclofenac sodium. Acta Pharm. 2003;53:263–73.

    CAS  PubMed  Google Scholar 

  5. Verma RK, Garg S. Development and evaluation of osmotically controlled oral drug delivery system of glipizide. Eur J Pharm Biopharm. 2004;57:513–25.

    Article  CAS  PubMed  Google Scholar 

  6. Zentner GM, Rork GS, Himmelstein KJ. The controlled porosity osmotic pump. J Control Release. 1985;1(4):269–82.

    Article  CAS  Google Scholar 

  7. Zentner GM, Rork GS, Himmelstein KJ. Osmotic flow through controlled porosity films: an approach to delivery of water soluble compounds. J Control Release. 1985;2:217–29.

    Article  CAS  Google Scholar 

  8. Santus G, Baker RW. Osmotic drug delivery: review of the patent literature. J Control Release. 1995;35:1–21.

    Article  CAS  Google Scholar 

  9. Verma RK, Krishna DM, Garg S. Formulation aspects in the development of osmotically controlled oral drug delivery systems. J Control Release. 2002;79(1–3):7–27.

    Article  CAS  PubMed  Google Scholar 

  10. Appel LE, Zentner GM. Use of modified ethylcellulose lattices for microporous coating of osmotic tablets. Pharm Res. 1991;8(5):600–4.

    Article  CAS  PubMed  Google Scholar 

  11. Okimoto K, Tokunaga Y, Ibuki R, Irie T, Uekama K, Rajewski RA, et al. Applicability of (SBE)7m-beta-CD in controlled-porosity osmotic pump tablets (OPTs). Int J Pharm. 2004;286(1–2):81–8.

    Article  CAS  PubMed  Google Scholar 

  12. Zentner GM, Rork GS, Himmelstein KJ, inventors; Merck & Co., Inc., assignee. Controlled porosity osmotic pump. US patent 4,880,631. November 6, 1990.

  13. McClelland GA, Sutton SC, Engle K, Zentner GM. The solubility-modulated osmotic pump: in vitro/in vivo release of diltiazem hydrochloride. Pharm Res. 1991;8:88–92.

    Article  CAS  PubMed  Google Scholar 

  14. Verma RK, Kaushal AM, Garg S. Development and evaluation of extended release formulations of isosorbide mononitrate based on osmotic technology. Int J Pharm. 2003;263:9–24.

    Article  CAS  PubMed  Google Scholar 

  15. Wong PSL, Barclay B, Deters JC, Theeuwes F, inventors; Alza Corporation, assignee. Osmotic device with dual thermodynamic activity. US patent 4,612,008. September 16, 1986.

  16. Ozdemir N, Sahin J. Design of a controlled release osmotic pump system of ibuprofen. Int J Pharm. 1997;158(1):91–7.

    Article  CAS  Google Scholar 

  17. Lin S-Y, K-h L, Li M-J. Influence of excipients, drugs, and osmotic agent in the inner core on the time-controlled disintegration of compression-coated ethylcellulose tablets. J Pharm Sci. 2002;91(9):2040–6.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang Y, Zhang Z, Wu F. A novel pulsed-release system based on swelling and osmotic pumping mechanism. J Control Release. 2003;89(1):47–55.

    Article  CAS  PubMed  Google Scholar 

  19. He F, MacGregor G. How far should salt intake be reduced? Hypertension. 2003;42(6):1093–9.

    Article  CAS  PubMed  Google Scholar 

  20. He F, MacGregor G. Salt, blood pressure and cardiovascular disease. Curr Opin Cardiol. 2007;22(4):298–305.

    Article  PubMed  Google Scholar 

  21. Schwartz JB, O'Connor RE, Schnaare RL. Optimization techniques in pharmaceutical formulation and processing. In: Banker GS, Rhodes CT, editors. Modern pharmaceutics. 4th ed. New York: Marcel Dekker; 2002. p. 607–26.

    Google Scholar 

  22. Myer RH, Montgomery DC. Response surface methodology. 2nd ed. New York: Wiley; 2002.

    Google Scholar 

  23. U.S. Department of Health and Human Service Food and Drug Administration Center for Drug Evaluation and Research (CDER). Guidance for industry: Modified release solid oral dosage forms: SUPAC-MR: Chemistry, manufacturing and controls, in vitro dissolution testing and in vivo bioequivalence documentation. September 1997. http://www.fda.gov/cder/guidance/1214fnl.pdf. Accessed Sept 5, 2008.

  24. O'Hara T, Dunne A, Butler J, Devane J. A review of methods used to compare dissolution profile data. Pharm Sci Tech Today. 1998;1(5):214–23.

    Article  Google Scholar 

  25. Gil EC, Colarte AI, Sampedro JLL, Bataille B. Subcoating with Kollidon VA64 as water barrier in a new combined native dextran/HPMC-cetyl alcohol controlled release tablet. Eur J Pharm Biopharm. 2008;69:303–11.

    Article  Google Scholar 

  26. Shanghai Sunpower Material. PVP. http://www.chinapvp.com/technoinfo-1.htm. Accessed Sept 5, 2008.

  27. Rowe RC, Sheskey PJ, Weller PJ. Handbook of pharmaceutical excipients. 4th ed. London: Pharmaceutical Press; 2003.

    Google Scholar 

  28. Okimoto K, Ohike A, Ibuki R, Aoki O, Ohnishi N, Rajewski RA, et al. Factors affecting membrane-controlled drug release for an osmotic pump tablet (OPT) utilizing (SBE)7m-beta-CD as both a solubilizer and osmotic agent. J Control Release. 1999;60(2–3):311–19.

    Article  CAS  PubMed  Google Scholar 

  29. Kim YK, Park HB, Lee YM. Gas separation properties of carbon molecular sieve membranes derived from polyimide/polyvinylpyrrolidone blends: effect of the molecular weight of polyvinylpyrrolidone. J Membrane Sci. 2005;251:159–67.

    Article  CAS  Google Scholar 

  30. De Muth JE. Basic statistics and pharmaceutical statistical applications. 2nd ed. New York: Chapman & Hall; 2006.

    Google Scholar 

  31. Dietrich P, Bauer-Brandi A, Schubert R. Influence of tableting forces and lubricant concentration on the adhesion strength in complex layer tablets. Drug Dev Ind Pharm. 2000;26:745–54.

    Article  CAS  PubMed  Google Scholar 

  32. Montgomery DC. Design and analysis of experiments. 4th ed. New York: Wiley; 1997.

    Google Scholar 

  33. Fritzsche AK, Arevalo AR, Moore MD, Elings VB, Kjoller K, Wu CM. The surface structure and morphology of polyvinylidenefluoride microfiltration membranes by atomic force microscopy. J Membr Sci. 1992;68:65–78.

    Article  CAS  Google Scholar 

  34. Dietz P, Hansma PK, Inacker O, Lehmann H, Herrmann K. Surface pore structures of micro- and ultrafiltration membranes imaged with the atomic force microscope. J Membr Sci. 1992;65:101–11.

    Article  CAS  Google Scholar 

  35. Palacio L, Pradanos P, Calvo JI, Hernandez A. Porosity measurements by a gas penetration method and other techniques applied to membrane characterization. Thin Solid Films. 1999;348:22–9.

    Article  CAS  Google Scholar 

  36. Kim JH, Min BR, Park HC, Won J, Kang YS. Phase behavior and morphological studies of polyimide/PVP/solvent/water system by phase inversion. J Appl Polym Sci. 2001;81:3481–8.

    Article  CAS  Google Scholar 

  37. Ochoa NA, Pradanos P, Palacio L, Pagliero C, Marchese J, Hernandez A. Pore size distributions based on AFM imaging and retention of multidisperse polymer solutes: characterisation of polyethersulfone UF membranes with dopes containing different PVP. J Membr Sci. 2001;187:227–37.

    Article  CAS  Google Scholar 

  38. Kim YK, Park HB, Lee YM. Carbon molecular sieve membrane derived from thermally labile polymer containing blend polymers and their gas separation properties. J Membrane Sci. 2004;243:9–17.

    Article  CAS  Google Scholar 

  39. Nakao S. Determination of pore size and pore size distribution 3.Filtration membranes. J Membr Sci. 1994;96:131–65.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

Financial support from the Thailand Research Fund through the Royal Golden Jubilee Ph.D. Program (Grant No. PHD/0095/2544) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuttanan Sinchaipanid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuntikulwattana, S., Mitrevej, A., Kerdcharoen, T. et al. Development and Optimization of Micro/Nanoporous Osmotic Pump Tablets. AAPS PharmSciTech 11, 924–935 (2010). https://doi.org/10.1208/s12249-010-9446-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-010-9446-4

KEY WORDS

Navigation