Skip to main content

Advertisement

Log in

Preparation and Characterization of Salmon Calcitonin–biotin Conjugates

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

This study was performed to prepare and characterize the biotinylated Salmon calcitonin (sCT) for oral delivery and evaluate the hypocalcemic effect of biotinylated-sCTs in rats. Biotinylated sCTs was characterized by using high performance liquid chromatography (HPLC) and MALDITOF-MS. The effect of biotinylation on permeability across Caco-2 cell monolayers was examined. Their hypocalcemic effect was determined in rats. Mono- and di-bio-sCTs were separated by reverse phase HPLC. The molecular weights of mono-bio-sCT and di-bio-sCT were determined to be 3,660.5 and 3,900.2 Da, respectively. The permeability of biotinylated-sCTs across Caco-2 cell monolayers was observed with a significant enhancement compared with sCT. Intrajejunal (ij) administration of mono-bio-sCT and di-bio-sCT resulted in sustained reduction in serum calcium levels, with a maximum reduction (% max(d)) of 21.6% and 30% after 4 h and 6 h of application, respectively. The biotin conjugation of sCT may be a promising strategy for increasing the oral bioavailability of sCT and achieving sustained calcium-lowering effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P. Caliceti, and F. M. Veronese. Pharmacokinetic and biodistribution properties of poly(ethylene glycol)–protein conjugates. Drug Deliv. Rev. 55:1261–1277 (2003).

    Article  CAS  Google Scholar 

  2. K. H. Song, S. J. Chung, and C. K. Shim. Enhanced intestinal absorption of salmon calcitonin (sCT) from proliposomes containing bile salts. J. Control Release. 106:298–308 (2005).

    Article  PubMed  CAS  Google Scholar 

  3. D. H. Na, Y. S. Youn, S. D. Lee, M. W. Son, W. B. Kim, P. P. DeLuca, and K. C. Lee. Monitoring of peptide acylation inside degrading PLGA microspheres by capillary electrophoresis and MALDI-TOF mass spectrometry. J. Control Release. 92:291–299 (2003).

    Article  PubMed  CAS  Google Scholar 

  4. M. Azria. The calcitonins, Physiology and pharmacology, Karger, Basel, 1989.

    Google Scholar 

  5. K. C. Lee, M. O. Park, D. H. Na, Y. S. Youn, S. D. Lee, S. D. Yoo, H. S. Lee, and P. P. DeLuca. Intranasal delivery of PEGylated salmon calcitonins: hypocalcemic effects in rats. Calcif Tissue Int. 73:545–549 (2003).

    Article  PubMed  CAS  Google Scholar 

  6. Y. H. Lee, G. D. Leesman, V. Makhey, H. Yu, P. Hu, B. Perry, J. P. Sutyak, E. J. Wagner, L. M. Falzone, W. Stern, and P. J. Sinko. Regional oral absorption, hepatic first-pass effect, and non-linear disposition of salmon calcitonin in beagle dogs. Eur. J. Pharm. Biopharm. 50:205–211 (2000).

    Article  Google Scholar 

  7. P. J. Sinko, C. L. Smith, L. T. McWhorter, W. Stern, E. J. Wagner, and J. P. Gilligan. Utility of pharmacodynamic measures for assessing the oral bioavailability of peptides. 1. Administration of recombinant salmon calcitonin in rats. J. Pharm. Sci. 84:1374–1378 (1995).

    Article  PubMed  CAS  Google Scholar 

  8. Y. H. Lee, and P. J. Sinko. Oral delivery of salmon calcitonin. Adv. Drug Deliv. Rev. 42:225–238 (2000).

    Article  PubMed  CAS  Google Scholar 

  9. Y. S. Youn, J. Y. Jung, S. H. Oh, S. D. Yoo, and K. C. Lee. Improved intestinal delivery of salmon calcitonin by Lys18-amine specific PEGylation: stability, permeability, pharmacokinetic behavior and in vivo hypocalcemic efficacy. J. Control Release. 114:334–342 (2006).

    Article  PubMed  CAS  Google Scholar 

  10. S. Mansoor, Y. S. Youn, and K. C. Lee. Oral delivery of mono-PEGylated sCT (Lys18) in rats: regional difference in stability and hypocalcemic effect. Pharm. Dev. Technol. 10:389–396 (2005).

    PubMed  CAS  Google Scholar 

  11. J. Wang, D. Chow, H. Heiati, and W. C. Shen. Reversible lipidization for the oral delivery of salmon calcitonin. J. Control Release. 88:369–380 (2003).

    Article  PubMed  CAS  Google Scholar 

  12. C. Prego, D. Torres, and M. J. Alonso. Chitosan nanocapsules as carriers for oral peptide delivery: effect of chitosan molecular weight and type of salt on the in vitro behaviour and in vivo effectiveness. J. Nanosci. Nanotechnol. 6:2921–2928 (2006).

    Article  PubMed  CAS  Google Scholar 

  13. C. Prego, D. Torres, E. Fernandez-Megia, R. Novoa-Carballal, E. Quiñoá, and M. J. Alonso. Chitosan-PEG nanocapsules as new carriers for oral peptide delivery. Effect of chitosan pegylation degree. J. Control Release. 111:299–308 (2006).

    Article  PubMed  CAS  Google Scholar 

  14. M. Garcia-Fuentes, D. Torres, and M. J. Alonso. New surface-modified lipid nanoparticles as delivery vehicles for salmon calcitonin. Int. J. Pharm. 296:122–132 (2005).

    Article  PubMed  CAS  Google Scholar 

  15. D. Guggi, C. E. Kast, and A. Bernkop-Schnürch. In vivo evaluation of an oral salmon calcitonin-delivery system based on a thiolated chitosan carrier matrix. Pharm. Res. 20:1989–1994 (2003).

    Article  PubMed  CAS  Google Scholar 

  16. Y. H. Sang, and P. T. Gwan. Biodegradable nanoparticles containing protein-fatty acid complexes for oral delivery of salmon calcitonin. J. Pharm. Sci. 932:488–495 (2004).

    Article  Google Scholar 

  17. K. Yamabe, Y. Kato, H. Onishi, and Y. Machida. Potentiality of double liposomes containing salmon calcitonin as an oral dosage form. J. Control Release. 89:429–436 (2003).

    Article  PubMed  CAS  Google Scholar 

  18. H. M. Said, R. Redha, and W. Nylander. A carrier-mediated, Na+ gradient dependent transport for biotin in human intestinal brush border membrane vesicles. Am. J. Physiol. 253:G631–G636 (1987).

    PubMed  CAS  Google Scholar 

  19. P. D. Prasad, H. Wang, W. Huang, Y. J. Fei, F. H. Leibach, L. D. Devoe, and V. Ganapathy. Molecular and functional characterization of the intestinal Na+ dependent multivitamin tranporter. Arch. Biochem. Biophys. 366:95–106 (1999).

    Article  PubMed  CAS  Google Scholar 

  20. J. Zempleni. Uptake, localization, and noncarboxylase roles of biotin. Annu. Rev. Nutr. 25:175–196 (2005).

    Article  PubMed  CAS  Google Scholar 

  21. S. Ramanathan, S. Pooyan, S. Stein, P. D. Prasad, J. Wang, M. J. Leibowitz, V. Ganapathy, and P. J. Sinko. Targeting the sodium-dependent multivitamin transporter (SMVT) for improving the oral absorption properties of a retro-inverso Tat nonapeptide. Pharm. Res. 18:950–956 (2001).

    Article  PubMed  CAS  Google Scholar 

  22. S. Ramanathan, B. Qui, S. Pooyan, G. Zhang, S. Stein, P. D. Prasad, J. Wang, M. J. Leibowitz, and P. J. Sinko. Targeted PEG-based bioconjugates enhance the cellular uptake and transport of a HIV-1 TAT nonapeptide. J. Control Release. 77:199–212 (2001).

    Article  PubMed  CAS  Google Scholar 

  23. Y. Koda, K. Shiotani, I. Toth, Y. Tsuda, Y. Okada, and J. T. Blanchfield. Comparison of the in vitro apparent permeability and stability of opioid mimetic compounds with that of the native peptide. Bioorg. Med. Chem. Lett. 17:2043–2046 (2007).

    Article  PubMed  CAS  Google Scholar 

  24. N. S. Chatterjee, C. K. Kumar, A. Ortiz, S. A. Rubin, and H. M. Said. Molecular mechanism of the intestinal biotin transport process. Am. J. Physiol. 277:C605–C613 (1999).

    PubMed  CAS  Google Scholar 

  25. S. H. Lee, S. Lee, Y. S. Youn, D. H. Na, S. Y. Chae, Y. Byun, and K. C. Lee. Synthesis, characterization, and pharmacokinetic studies of PEGylated glucagons-like peptide-1. Bioconjug. Chem. 16:377–382 (2005).

    Article  PubMed  Google Scholar 

  26. Y. S. Youn, D. H. Na, S. D. Yoo, S. C. Song, and K. C. Lee. Chromatographic separation and mass spectrometric identification of positional isomers of polyethylene glycol-modified growth hormone-releasing factor (1–29). J. Chromatogr. A. 1061:45–49 (2004).

    Article  PubMed  CAS  Google Scholar 

  27. M. Cholewinski, B. Lückel, and H. Horn. Degradation pathways, analytical characterization and formulation strategies of a peptide and a protein. Calcitonine and human growth hormone in comparison. Pharm. Acta Helv. 71:405–419 (1996).

    Article  PubMed  CAS  Google Scholar 

  28. S. D. Yoo, H. Jun, B. S. Shin, H. S. Lee, M. O. Park, P. P. Deluca, and K. C. Lee. Pharmacokinetic disposition of polyethylene glycol-modified salmon calcitonins in rats. Chem. Pharm. Bull. (Tokyo). 48:1921–1924 (2000).

    CAS  Google Scholar 

  29. S. Hirai, T. Yasbiki, and H. Mima. Effect of surfactants to nasal absorption of insulin in rats. Int. J. Pharm. 9:165–172 (1981).

    Article  CAS  Google Scholar 

  30. P. Calceti, S. Salmaso, G. Walker, and A. Bernkop-Schnürch. Development and in vivo evaluation of an oral insulin–PEG delivery system. Eur. J. Pharm. Sci. 22:315–323 (2004).

    Article  PubMed  CAS  Google Scholar 

  31. R. I. Mahato, A. S. Narang, L. Thoma, and D. D. Miller. Emerging trends in oral delivery of peptide and protein drugs. Crit. Rev. Ther. Drug Carr. Syst. 20:153–214 (2003).

    Article  CAS  Google Scholar 

  32. R. B. Shah, and M. A. Khan. Protection of salmon calcitonin breakdown with serine proteases by various ovomucoid species for oral drug delivery. J. Pharm. Sci. 93:392–406 (2004).

    Article  PubMed  CAS  Google Scholar 

  33. R. B. Shah, and M. A. Khan. Regional permeability of salmon calcitonin in isolated rat gastrointestinal tracts: transport mechanism using Caco-2 Cell monolayer. AAPS J. 6:1–5 (2004).

    Article  Google Scholar 

  34. S. Y. Chae, C. H. Jin, H. J. Shin, Y. S. Youn, S. Lee, and K. C. Lee. Preparation, characterization, and application of biotinylated and biotin-PEGylated glucagon-like peptide-1 analogues for enhanced oral delivery. Bioconjug. Chem. 19:334–341 (2008).

    Article  PubMed  CAS  Google Scholar 

  35. S. el-Khafagy, M. Morishita, Y. Onuki, and K. Takayama. Current challenges in non-invasive insulin delivery systems: a comparative review. Adv. Drug Deliv. Rev. 5915:1521–1546 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meltem Cetin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cetin, M., Youn, Y.S., Capan, Y. et al. Preparation and Characterization of Salmon Calcitonin–biotin Conjugates. AAPS PharmSciTech 9, 1191–1197 (2008). https://doi.org/10.1208/s12249-008-9165-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-008-9165-2

Keywords

Navigation