Skip to main content

Advertisement

Log in

Stability of Poly(ε-caprolactone) Microparticles Containing Brucella ovis Antigens as a Vaccine Delivery System Against Brucellosis

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

In previous works, our research group has successfully proved the use of subcellular vaccines based on poly(ε-caprolactone) (PEC) microparticles containing an antigenic extract of Brucella ovis (HS) against experimental brucellosis in both mice and rams. However, the successful exploitation of pharmaceutical products, and therefore of this product as veterinary vaccine, requires preservation of both biological activity and native structure in all steps of development from purification to storage. In this context, we have carried out an accelerated stability study to evaluate the relative stability of HS when loading in PEC microparticles. For this purpose, freeze-dried microparticles were stored at 40 ± 1°C and 75% RH as a preliminary analysis of a stability testing. The results showed that both physico-chemical (size, morphology, antigen content, release profile) and biological (integrity and antigenicity of the HS) properties were preserved after 6 months of storage. On the contrary, after 1 year of storage, the HS release profile was dramatically affected probably due to a progressive loss of the polymer microstructure. In addition, the degradation and loss of the antigenicity of the HS components was also evident by SDS-PAGE and immunoblotting analysis. In fact, after 12 months of storage, only the integrity and antigenicity of two of the major protective proteins of the HS antigenic complex were preserved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. R. A. Bowden, A. Cloeckaert, M. S. Zygmunt, and G. Dubray. Outer-membrane protein- and rough lipopolysaccharide-specific monoclonal antibodies protect mice against Brucella ovis. J. Med. Microbiol. 43:344–347 (1995).

    PubMed  CAS  Google Scholar 

  2. A. P. MacMillan. Conventional serological tests. In K. H. Nielsen, and J. R. Duncan (eds.), Animal Brucellosis, CRC, Boca Raton, Florida, 1990, pp. 153–197.

    Google Scholar 

  3. G. G. Alton, and S. S. Elberg. Rev1 Brucella melitensis vaccine: a review of ten years of study. Vet. Bull. 371:793–800 (1967).

    Google Scholar 

  4. G. De Rosa, D. Larobina, M. I. La Rotonda, P. Musto, F. Quaglia, and F. Ungaro. How cyclodextrin incorporation affects the properties of protein-loaded PLGA-based microspheres: the case of insulin/hydroxypropyl-β-cyclodextrin system. J. Contr. Rel. 102:71–83 (2005).

    Article  CAS  Google Scholar 

  5. J. M. Blasco, and R. Díaz. Brucella melitensis Rev1 vaccine as a cause of human brucellosis. Lancet. 342:805 (1993).

    Article  PubMed  CAS  Google Scholar 

  6. P. L. Nicoletti. Relationship between animal and human disease. In E. J. Young, and M. J. Corbel (eds.), Brucellosis: Clinical and Laboratory Aspects, CRC, Boca Raton, Florida, 1989, pp. 41–51.

    Google Scholar 

  7. J. M. Blasco, C. Gamazo, A. J. Winter, M. P. Jiménez de Bagüés, C. Marín, M. Barberán, I. Moriyón, B. Alonso-Urmeneta, and R. Díaz. Evaluation of whole cell and subcellular vaccines against Brucella ovis in rams. Vet. Immunol. Immunopathol. 37:257–270 (1993).

    Article  PubMed  CAS  Google Scholar 

  8. C. Gamazo, A. J. Winter, I. Moriyón, J. L. Riezu-Boj, J. M. Blasco, and R. Díaz. Comparative analysis of proteins extracted by hot saline or release spontaneously into outer membrane blebs from field strains of Brucella ovis and Brucella melitensis. Infect. Immun. 57:1419–1426 (1989).

    PubMed  CAS  Google Scholar 

  9. J. I. Riezu-Boj, I. Moriyón, J. M. Blasco, C. Gamazo, and R. Díaz. Antibody response to Brucella ovis outer membrane proteins in ovine brucellosis. Infect. Immun. 58:489–494 (1990).

    PubMed  CAS  Google Scholar 

  10. R. A. Bowden, S. M. Estein, M. S. Zygmunt, G. Dubray, and A. Cloeckaert. Identification of protective outer membrane antigens of Brucella ovis by passive immunization of mice with monoclonal antibodies. Microbes. Infect. 2:481–488 (2000).

    Article  PubMed  CAS  Google Scholar 

  11. M. P. Jiménez de Bagüés, P. H. Elzer, M. Barberán, J. M. Blasco, C. M. Marín, C. Gamazo, and A. J. Winter. Protective immunity to Brucella ovis in BALB/c mice following recovery from primary infection or immunization with subcellular vaccines. Infect. Immun. 62:632–638 (1994).

    PubMed  Google Scholar 

  12. A. Cloeckaert, P. de Wergifosse, G. Dubray, and J. N. Limet. Identification of seven surface-exposed Brucella outer membrane proteins by use of monoclonal antibodies: immunogold labelling for electron microscopy and enzyme-linked immunosorbent assay. Infect. Immun. 58:3980–3987 (1990).

    PubMed  CAS  Google Scholar 

  13. A. Cloeckaert, N. Vizcaíno, J. -Y. Paquet, R. A. Bowden, and P. H. Elzer. Major outer membrane proteins of Brucella spp.: past, present and future. Vet. Microbiol. 90:229–247 (2002).

    Article  PubMed  CAS  Google Scholar 

  14. I. Salhi, R. A. Boigegrain, J. Machold, C. Weise, A. Cloeckaert, and B. Rouot. Characterization of new members of the Group 3 outer membrane protein family of Brucella spp. Infect. Immun. 71:4326–4332 (2003).

    Article  PubMed  CAS  Google Scholar 

  15. A. Tibor, B. Decelle, and J. J. Letesson. Outer membrane proteins Omp10, Omp16, and Omp19 of Brucella spp. are lipoproteins. Infect. Immun. 67:4960–4962 (1999).

    PubMed  CAS  Google Scholar 

  16. R. Kittelberger, F. Hilbink, M. F. Hansen, G. P. Ross, G. W. de Lisle, A. Cloeckaert, and J. de Bruyn. Identification and characterization of immunodominant antigens during the course of infection with Brucella ovis. J. Vet. Diagn. Invest. 7:210–218 (1995).

    PubMed  CAS  Google Scholar 

  17. M. Murillo, C. Gamazo, J. M. Irache, and M. M. Goñi. Polyester microparticles as a vaccine delivery system for brucellosis: influence of the polymer on release, phagocytosis and toxicity. J. Drug Target. 10:211–219 (2002).

    Article  PubMed  CAS  Google Scholar 

  18. M. Murillo, M. J. Grilló, J. Reñé, C. M. Marín, M. Barberán, M. M. Goñi, J. M. Blasco, J. M. Irache, and C. Gamazo. A Brucella ovis antigenic complex bearing poly-epsilon-caprolactone microparticles confer protection against experimental brucellosis in mice. Vaccine. 19:4099–4106 (2001).

    Article  PubMed  CAS  Google Scholar 

  19. G. García del Barrio, F. J. Novo, and J. M. Irache. Loading of plasmid DNA into PLGA microparticles using TROMS (Total Recirculation One-Machine System): evaluation of its integrity and controlled release properties. J. Control. Rel. 86:123–130 (2003).

    Article  Google Scholar 

  20. M. P. Muñoz, M. Estevan, C. M. Marín, M. J. De Miguel, M. J. Grilló, M. Barberán, J. M. Irache, J. M. Blasco, and C. Gamazo. Brucella outer membrane complex-loaded microparticles as a vaccine against Brucella ovis in rams. Vaccine. 24:1897–1905 (2006).

    Article  PubMed  CAS  Google Scholar 

  21. M. Estevan, C. Gamazo, M. J. Grilló, G. García del Barrio, J. M. Blasco, and J. M. Irache. Experiments on a sub-unit vaccine encapsulated in microparticles and its efficacy against Brucella melitensis in mice. Vaccine. 24:4179–4187 (2006).

    Article  PubMed  CAS  Google Scholar 

  22. M. Estevan, C. Gamazo, G. González-Gaitano, and J. M. Irache. Optimization of the entrapment of bacterial cell envelope extracts into microparticles for vaccine delivery. J. Microencapsul. 23:169–181 (2006).

    Article  PubMed  CAS  Google Scholar 

  23. Instructions BCA Protein Assay Reagent Kit. Pierce Biotechnology, Rockford, USA, 2002.

  24. J. P. McGee, M. Singh, X. M. Li, H. Qiu, and D. T. O’Hagan. The encapsulation of a model protein in poly(d,l lactide-co-glycolide) microparticles of various sizes: an evaluation of process reproducibility. J. Microencapsul. 14:197–210 (1997).

    Article  PubMed  CAS  Google Scholar 

  25. D. T. O’Hagan, J. P. McGee, R. Boyle, D. Gumaer, X. M. Li, B. Potts, C. Y. Wang, and W. C. Koff. The preparation, characterization and pre-clinical evaluation of an orally administered HIV-1 vaccine, consisting of a branched peptide immunogen entrapped in controlled release microparticles. J. Control. Rel. 36:75–84 (1995).

    Article  Google Scholar 

  26. H. Abe. Thermal degradation of environmentally degradable poly(hydroxyalkanoic acid)s. Macromol. Biosci. 6:469–486 (2006).

    Article  PubMed  CAS  Google Scholar 

  27. C. G. Pitt. Poly(ε-caprolactone) and its copolymers. In M. Chasin, and R. Langer (eds.), Biodegradable Polymers as Drug Delivery Systems, Marcel Dekker, New York, 1990, pp. 71–120.

    Google Scholar 

  28. M. Yang, F. Cui, B. You, L. Wang, L. Zhang, and Y. Kawashima. A novel pH-dependent gradient-release delivery system for nitrendipine I. Manufacturing, evaluation in vitro and bioavailability in healthy dogs. J. Control. Rel. 98:219–229 (2004).

    CAS  Google Scholar 

  29. C. Yan, J. H. Resau, J. Heweston, M. West, W. L. Rill, and M. Kende. Characterisation and morphological analysis of protein loaded poly(lactide-co-glycolide) microparticles prepared by water-in-oil-in-water emulsion technique. J. Control. Rel. 32:231–241 (1994).

    Article  CAS  Google Scholar 

  30. M. A. Benoit, B. Baras, and J. Gillard. Preparation and characterization of protein-loaded poly(ε-caprolactone) microparticles for oral vaccine delivery. Int. J. Pharm. 184:73–84 (1999).

    Article  PubMed  CAS  Google Scholar 

  31. S. K. Mallapragada, N. A. Peppas, and P. Colombo. Crystal dissolution-controlled release systems. II. Metronidazole release from semicrystalline poly(vinyl alcohol) systems. J. Biomed. Mat. Res. 36:125–130 (1997).

    Article  CAS  Google Scholar 

  32. J. C. Jeong, J. Lee, and K. Cho. Effects of crystalline microstructure on drug release behaviour of poly(ε-caprolactone) microspheres. J. Control. Rel. 92:249–258 (2003).

    Article  CAS  Google Scholar 

  33. W. J. Lin, and C. C. Yu. The effect of solvent removal conditions on performance and release property of protein-loaded microparticles. J. Microencapsul. 19:767–773 (2002).

    Article  PubMed  CAS  Google Scholar 

  34. V. R. Sinha, K. Bansal, R. Kaushik, R. Kumria, and A. Trehan. Poly-ɛ-caprolactone microspheres and nanospheres: an overview. Int. J. Pharm. 278:1–23 (2004).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the “Ministerio de Educación y Cultura de España” (Grants AGL2000-0299-C03 and AGL2004-07088-C03), Instituto de Salud Carlos III (Red Temática de Investigación en Brucelosis, Ref. No. G03/201), Fundación Ma Francisca Roviralta and Fundación Universitaria de Navarra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan M. Irache.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Estevan, M., Gamazo, C., Martínez-Galan, F. et al. Stability of Poly(ε-caprolactone) Microparticles Containing Brucella ovis Antigens as a Vaccine Delivery System Against Brucellosis. AAPS PharmSciTech 9, 1063–1069 (2008). https://doi.org/10.1208/s12249-008-9149-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-008-9149-2

Key words

Navigation