Skip to main content
Log in

Enhancement of Dissolution Rate of Gliclazide Using Solid Dispersions with Polyethylene Glycol 6000

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The aim of the present study was to enhance the dissolution rate of gliclazide using its solid dispersions (SDs) with polyethylene glycol (PEG) 6000. The phase solubility behavior of gliclazide in presence of various concentrations of PEG 6000 in 0.1 N HCl was obtained at 37 °C. The solubility of gliclazide increased with increasing amount of PEG 6000 in water. Gibbs free energy (\(\Delta G_{{\text{tr}}}^{\text{o}} \)) values were all negative, indicating the spontaneous nature of gliclazide solubilization and they decreased with increase in the PEG 6000 concentration, demonstrating that the reaction conditions became more favorable as the concentration of PEG 6000 increased. The SDs of gliclazide with PEG 6000 were prepared at 1:1, 1:2 and 1:5 (gliclazide/PEG 6000) ratio by melting-solvent method and solvent evaporation method. Evaluation of the properties of the SDs was performed by using dissolution, Fourier-transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC) and X-ray diffraction (XRD) studies. The SDs of gliclazide with PEG 6000 exhibited enhanced dissolution rate of gliclazide, and the rate increased with increasing concentration of PEG 6000 in SDs. Mean dissolution time (MDT)of gliclazide decreased significantly after preparation of SDs and physical mixture with PEG 6000. The FTIR spectroscopic studies showed the stability of gliclazide and absence of well-defined gliclazide–PEG 6000 interaction. The DSC and XRD studies indicated the microcrystalline or amorphous state of gliclazide in SDs of gliclazide with PEG 6000.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C. Leuner, and J. Dressman. Improving drug solubility for oral delivery using solid dispersion. Eur. J. Pharm. Biopharm. 50:47–60 (2000).

    Article  PubMed  CAS  Google Scholar 

  2. G. V. Betageri, and K. R. Makarla. Enhancement of dissolution of glyburide by solid dispersion and lyophilization techniques. Int. J. Pharm. 126:155–160 (1995).

    Article  CAS  Google Scholar 

  3. G. V. Mooter, R. Kinget, N. Blaton, and F. Damian. Physical stability of solid dispersion of anti-viral agent UC-781 with PEG 6000, Gelucire®44/14 and PVK 30. Int. J. Pharm. 244:87–98 (2002).

    Article  PubMed  Google Scholar 

  4. G. V. Betageri, and K. R. Makarla. Characterization of glyburide-polyethylene by solid dispersions. Drug Dev. Ind. Pharm. 22(7):731–734 (1996).

    Article  CAS  Google Scholar 

  5. L. S. Law, and W. Y. Lo. Dissolution behavior of griseofulvin solid dispersions using polyethylene glycol, talc, and their combination as dispersion carriers. Drug Dev. Ind. Pharm. 32(3):231–236 (1996).

    Google Scholar 

  6. P. Mura, A. Manderioli, G. Bramanti, and L. Ceccarelli. Properties of solid dispersions of naproxen in various polyethylene glycols. Drug Dev. Ind. Pharm. 22(9&10):909–916 (1996).

    Article  CAS  Google Scholar 

  7. G. Trapani, M. Franco, A. Latrofa, M. R. Pantaleo, M. R. Provenzano, E. Sanna, E. Maciocco, and G. Liso. Physicochemical characterization and in vivo properties of Zolpidem in solid dispersions with polyethylene glycol 4000 and 6000. Int. J. Pharm. 184:121–130 (1999).

    Article  PubMed  CAS  Google Scholar 

  8. G. Trapani, M. Franco, A. Latrofa, C. Tullio, M. R. Provenzano, M. Serra, M. Muggironi, G. Biggio, and G. Liso. Dissolution properties and anticonvulsant activity of phenytoin–polyethylene glycol 6000 and –polyvinylpyrrolidone K-30 solid dispersions. Int. J. Pharm. 225:63–73 (2001).

    Article  PubMed  Google Scholar 

  9. H. Valizadeh, A. Nokhodchi, N. Qarakhani, P. Zakeri-Milani, S. Azarmi, D. Hassanzadeh, and R. Lobenberg. Physicochemical characterization of solid dispersions of indomethacin with PEG 6000, Myrj 52, Lactose, Sorbitol, Dextrin, and Eudragit E100. Drug Dev. Ind. Pharm. 30(3):303–317 (2004).

    Article  PubMed  CAS  Google Scholar 

  10. M. B. Tashtoush, S. Z. Al-Qashi, and M. N. Najib. In vitro and in vivo evaluation of glibenclamide in solid dispersion system. Drug Dev. Ind. Pharm. 30(6):601–607 (2004).

    Article  PubMed  CAS  Google Scholar 

  11. J. E. F. Reynolds, (Ed.), Martindale: The Extra Pharmacopoiea, 30th ed. The Pharmaceutical Press, London, P-279–280.

  12. A. D. Harrower. Comparison of efficacy, secondary failure rate and complications of sulfonylurea. J. Diabetes Its Complicat. 8:201–203 (1994).

    Article  CAS  Google Scholar 

  13. K. J. Palmer, and R. N. Brogden. Gliclazide, an update of its pharmacological properties and therapeutic efficacy in NIDDM. Drugs. 46:92–125 (1993).

    Article  PubMed  CAS  Google Scholar 

  14. R. Lobenberg, and G. L. Amidon. Modern bioavailability, bioequivalence and biopharmaceutics classification system: new scientific approaches to international regulatory standards. Eur. J. Pharm. Biopharm. 50:3–12 (2000).

    Article  PubMed  CAS  Google Scholar 

  15. K. G. H. Desai, A. R. Kulkarni, and T. M. Aminabhavi. Solubility of rofecoxib in presence of methanol, ethanol and sodium lauryl sulfate at (298.15, 303.15 and 308.15) K. J. Chem. Eng. Data. 48:942–945 (2003).

    Article  CAS  Google Scholar 

  16. J. L. Ford. The current status of solid dispersions. Pharm. Acta Helv. 61:69–88 (1986).

    PubMed  CAS  Google Scholar 

  17. L. Chengsheng, G. H. D. Kashappa, and L. Chenguang. Enhancement of dissolution rate of valdecoxib using solid dispersions with PEG-4000. Drug Dev. Ind. Pharm. 31:1–10 (2005).

    Google Scholar 

  18. T. Higuchi, and K. Connors. Phase solubility techniques. Adv. Anal. Chem. Instrum. 4:17–123 (1965).

    Google Scholar 

  19. M. J. Arias, J. M. Gines, J. R. Moyano, and A. M. Rabasco. Dissolution properties and in vivo behavior of triamterene in solid dispersions with polyethylene glycols. Pharm. Acta Helv. 71:229–235 (1996).

    Article  PubMed  CAS  Google Scholar 

  20. F. Damian, N. Blaton, L. Naesens, J. Balzarini, R. Kinget, P. Augustinjns, and G. V. Mooter. Physicochemical characterization of solid dispersions of the antiviral agent UC-781 with polyethylene glycol 6000 and Gelucire 44/14. Eur. J. Pharm. Sci. 10:311–322 (2000).

    Article  PubMed  CAS  Google Scholar 

  21. S. Okonogi, T. Oguchi, E. Yonemochi, S. Puttipipatkhachorn, and K. Yamamoto. Improved dissolution of ofloxacin via solid dispersion. Int. J. Pharm. 156:175–180 (1997a).

    Article  CAS  Google Scholar 

  22. J. E. Polli, G. S. Rekhi, L. L. Augsburger, and V. P. Shah. Methods to compare dissolution profiles and a rationale for wide dissolution specification for metoprolol tartrate tablets. J. Pharm. Sci. 8:690–700 (1997).

    Article  Google Scholar 

  23. C. A. Khan, and C. T. Rhodes. The concept of dissolution efficiency. J. Pharm. Pharmacol. 27:48–49 (1975).

    PubMed  CAS  Google Scholar 

  24. A. T. M. Serajudin, P. C. Sheen, and M. A. Augustine. Improved dissolution of poorly water soluble drug from solid dispersions in poly ethylene:polysorbste 80 mixtures. J. Pharm. Sci. 79:463–464 (1990).

    Article  Google Scholar 

  25. A. T. M. Serajuddin, P. C. Sheen, D. Mufson, D. F. Bernstein, and M. A. Augustine. Effect of vehicle amphiphilicity on the dissolution and bioavailability of a poorly water-soluble drug from solid dispersions. J. Pharm. Sci. 77:414–417 (1988).

    Article  PubMed  CAS  Google Scholar 

  26. P. Costa, and J. M. S. Lobo. Modeling and comparison of dissolution profiles. Eur. J. Pharm. Sci. 13:123–133 (2001).

    Article  PubMed  CAS  Google Scholar 

  27. R. W. Korsemeyer, R. Gurney, E. Doelker, P. Buri, and N. A. Peppas. Mechanisms of solute release from porous hydrophilic polymers. Int. J. Pharm. 15:25–35 (1983).

    Article  Google Scholar 

  28. G. V. Betageri, H. D. Doshi, and R. W. Ravis. Carbamazepine and polyethylene glycol solid dispersions: preparation, in vitro dissolution and characterization. Drug Dev. Ind. Pharm. 23(12):1167–1176 (1997).

    Article  Google Scholar 

  29. O. I. Corrigan, C. A. Murphy, and R. F. Timoney. Dissolution properties of polyethylene glycols and polyethylene-drug systems. Int. J. Pharm. 4:67–74 (1979).

    Article  CAS  Google Scholar 

  30. J. L. Dubois, and J. L. Ford. Similarities in the release rates of different drugs from polyethylene glycol 6000 dispersions. J. Pharm. Pharmacol. 37:494–495 (1985).

    PubMed  CAS  Google Scholar 

  31. D. Q. M. Craig, and J. M. Newton. The dissolution of nortriptyline HCl from polyethylene glycol solid dispersions. Int. J. Pharm. 78:175–182 (1992).

    Article  CAS  Google Scholar 

  32. S. E. Saers, and D. Q. M. Craig. An investigation into the mechanisms of dissolution of alkyl p-aminobenzoates from polyethylene glycol solid dispersions. Int. J. Pharm. 83:211–219 (1992).

    Article  CAS  Google Scholar 

  33. G. V. Mooter, P. Augustijns, N. Blaton, and R. Kinget. Physico-chemical characterization of solid dispersions of temazepam with polyethylene glycol 6000 and PVP K 30. Int. J. Pharm. 164:67–80 (1998).

    Article  Google Scholar 

  34. Y. Özkan, T. Atay, N. Díkman, A. Isimer, and Y. H. Aboul-Enein. Improvement of water solubility and in vitro dissolution rate gliclazide by complexation with b-cyclodextrin. Pharm. Acta Helv. 74:365–370 (2000).

    Article  PubMed  Google Scholar 

  35. S. Winters, P. York, and P. Timmins. Solid state examination of a gliclazide:beta-cyclodextrin complex. Eur. J. Pharm. Sci. 5:209–214 (1997).

    Article  CAS  Google Scholar 

  36. B. C. Hancock, and G. Zografi. Characteristics and significance of the amorphous state in pharmaceutical systems. J. Pharm. Sci. 86:1–12 (1997).

    Article  PubMed  CAS  Google Scholar 

  37. S. C. Shin, and J. Kim. Physicochemical characterization of solid dispersion of furosemide with TPGS. Int. J. Pharm. 251:79–84 (2003).

    Article  PubMed  CAS  Google Scholar 

  38. S. Okonogi, E. Yonemochi, T. Oguchi, S. Puttipipatkhachorn, and K. Yamamoto. Enhanced dissolution of ursodeoxycholic acid from the solid dispersion. Drug Dev. Ind. Pharm. 23:1115–1121 (1997b).

    Article  CAS  Google Scholar 

  39. K. Yamashita, T. Nakate, K. Okimoto, A. Ohike, Y. Tokunaga, R. Ibuki, K. Higaki, and T. Kimura. Establishment of new preparation method for solid dispersion formulation of tacrolimus. Int. J. Pharm. 267:79–91 (2003).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Aristo pharmaceuticals Pvt. Ltd, Mumbai, India and Clariant GmbH, Sulzbach, Germany for supply of gliclazide and various grades of polyethylene glycol respectively. Mr. S. Biswal acknowledges All India Council for Technical Education, New Delhi, India for the scholarship granted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Biswal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biswal, S., Sahoo, J., Murthy, P.N. et al. Enhancement of Dissolution Rate of Gliclazide Using Solid Dispersions with Polyethylene Glycol 6000. AAPS PharmSciTech 9, 563–570 (2008). https://doi.org/10.1208/s12249-008-9079-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-008-9079-z

Key words

Navigation