Skip to main content
Log in

An Investigation of Instability in Dried Blood Spot Samples for Pharmacokinetic Sampling in Phase 3 Trials of Verubecestat

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

In-clinic dried blood spot (DBS) pharmacokinetic (PK) sampling was incorporated into two phase 3 studies of verubecestat for Alzheimer’s disease (EPOCH [NCT01739348] and APECS [NCT01953601]), as a potential alternative to plasma PK sampling for improved logistical feasibility and decreased blood volume burden. However, an interim PK analysis revealed verubecestat concentrations in DBS samples declined with time to assay in both trials. An investigation revealed wide variation in implementation practices for DBS sample handling procedures resulting in insufficient desiccation which caused verubecestat instability. High-resolution mass spectrometry evaluations of stressed and aged verubecestat DBS samples revealed the presence of two hydrolysis degradants. To minimize instability, new DBS handling procedures were implemented that provided additional desiccant and minimized the time to analysis. Both verubecestat hydrolysis products were previously discovered and synthesized during active pharmaceutical ingredient stability characterization. A liquid chromatography-mass spectrometry assay to quantitate the dominant verubecestat degradant in DBS samples was developed and validated. The application of this method to stressed and aged verubecestat DBS samples confirmed that degradant concentrations accounted for the observed decreases in the verubecestat concentration. Furthermore, after increasing desiccant amounts, degradant concentrations accounted for approximately 7% of the verubecestat concentration in DBS clinical samples, indicating that issues with sample handling were minimized with new storage and shipping conditions. This case study illustrates the challenges with employing new sampling techniques in large, global trials, and the importance of anticipating and mitigating implementation risks.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Scott JD, Li SW, Brunskill AP, Chen X, Cox K, Cumming JN, et al. Discovery of the 3-imino-1,2,4-thiadiazinane 1,1-dioxide derivative verubecestat (MK-8931)-a β-site amyloid precursor protein cleaving enzyme 1 inhibitor for the treatment of Alzheimer’s disease. J Med Chem. 2016;59(23):10435–50.

    Article  CAS  Google Scholar 

  2. Kennedy ME, Stamford AW, Chen X, Cox K, Cumming JN, Dockendorf MF, et al. The BACE1 inhibitor verubecestat (MK-8931) reduces CNS β-amyloid in animal models and in Alzheimer’s disease patients. Sci Transl Med. 2016;8(363):363ra150.

    Article  Google Scholar 

  3. Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med. 2016;8(6):595–608.

    Article  CAS  Google Scholar 

  4. Graf A, Borowsky B, Tariot P, Liu F, Riviere M-E, Rouzade-Dominguez M-L, et al. Alzheimer’s Prevention Initiative Generation Program: update and next steps [abstract OC11]. J Prev Alzheimers Dis. 2019;6(Suppl 1):S12–3.

    Google Scholar 

  5. Forman M, Palcza J, Tseng J, Stone JA, Walker B, Swearingen D, Troyer MD, Dockendorf MF. Safety, tolerability, and pharmacokinetics of the beta-site amyloid precursor protein-cleaving enzyme 1 inhibitor verubecestat (MK-8931) in healthy elderly male and female subjects. Clin Transl Sci. 2019;12(5):545–55.

    Article  CAS  Google Scholar 

  6. Egan MF, Kost J, Tariot PN, Aisen PS, Cummings JL, Vellas B, Sur C, Mukai Y, Voss T, Furtek C, Mahoney E, Harper Mozley L, Vandenberghe R, Mo Y, Michelson D. Randomized trial of verubecestat for mild-to-moderate Alzheimer’s disease. N Engl J Med. 2018;378(15):1691–703.

    Article  CAS  Google Scholar 

  7. Egan MF, Kost J, Voss T, Mukai Y, Aisen PS, Cummings JL, Tariot PN, Vellas B, van Dyck CH, Boada M, Zhang Y, Li W, Furtek C, Mahoney E, Harper Mozley L, Mo Y, Sur C, Michelson D. Randomized trial of verubecestat for prodromal Alzheimer’s disease. N Engl J Med. 2019;380(18):1408–20.

    Article  CAS  Google Scholar 

  8. Bhattacharya K, Wotton T, Wiley V. The evolution of blood-spot newborn screening. Transl Pediatr. 2014;3(2):63–70.

    PubMed  PubMed Central  Google Scholar 

  9. Wilhelm AJ, den Burger JC, Swart EL. Therapeutic drug monitoring by dried blood spot: progress to date and future directions. Clin Pharmacokinet. 2014;53(11):961–73.

    Article  CAS  Google Scholar 

  10. Kothare PA, Bateman KP, Dockendorf M, Stone J, Xu Y, Woolf E, Shipley LA. An integrated strategy for implementation of dried blood spots in clinical development programs. AAPS J. 2016;18(2):519–27.

    Article  CAS  Google Scholar 

  11. Li CC, Dockendorf M, Kowalski K, Yang B, Xu Y, Xie I, Kleijn HJ, Bosch R, Jones C, Thornton B, Marcantonio EE, Voss T, Bateman KP, Kothare PA. Population PK analyses of ubrogepant (MK-1602), a CGRP receptor antagonist: enriching in-clinic plasma PK sampling with outpatient dried blood spot sampling. J Clin Pharmacol. 2018;58(3):294–303.

    Article  CAS  Google Scholar 

  12. Evans C, Arnold M, Bryan P, Duggan J, James CA, Li W, Lowes S, Matassa L, Olah T, Timmerman P, Wang X, Wickremsinhe E, Williams J, Woolf E, Zane P. Implementing dried blood spot sampling for clinical pharmacokinetic determinations: considerations from the IQ Consortium Microsampling Working Group. AAPS J. 2015;17(2):292–300.

    Article  Google Scholar 

  13. Dockendorf MF, Murthy G, Bateman KP, Kothare PA, Anderson M, Xie I, Sachs JR, Burlage R, Goldman A, Moyer M, Shah JK, Ruba R, Shipley L, Harrelson J. Leveraging digital health technologies and outpatient sampling in clinical drug development: a phase I exploratory study. Clin Pharmacol Ther. 2019;105(1):168–76.

    Article  Google Scholar 

  14. Dockendorf MF, Jaworowicz D, Humphrey R, Anderson M, Breidinger S, Ma L, et al. A model-based approach to bridging plasma and dried blood spot concentration data for phase 3 verubecestat trials. AAPS Journal. 2021:accepted.

  15. Food and Drug Administration. Guidance for industry on bioanalytical method validation. Rockville, MD: FDA, Center for Drug Evaluation and Research; 2001.

  16. Enderle Y, Foerster K, Burhenne J. Clinical feasibility of dried blood spots: analytics, validation, and applications. J Pharm Biomed Anal. 2016;130:231–43.

    Article  CAS  Google Scholar 

  17. Malsagova K, Kopylov A, Stepanov A, Butkova T, Izotov A, Kaysheva A. Dried blood spot in laboratory: directions and prospects. Diagnostics (Basel). 2020;10(4):248.

    Article  Google Scholar 

  18. Timmerman P, White S, Globig S, Lüdtke S, Brunet L, Smeraglia J. EBF recommendation on the validation of bioanalytical methods for dried blood spots. Bioanalysis. 2011;3(14):1567–75.

    Article  CAS  Google Scholar 

  19. Temesi D, Swales J, Keene W, Dick S. The stability of amitriptyline N-oxide and clozapine N-oxide on treated and untreated dry blood spot cards. J Pharm Biomed Anal. 2013;76:164–8.

    Article  CAS  Google Scholar 

  20. Mehrotra N, Wang Y, Bhattaram VA, Earp JC, Florian J, Garnett C, et al. PK in late phase trials. Appl Clin Trials. 2012;21(2).

  21. Crimmins EM, Zhang YS, Kim JK, Frochen S, Kang H, Shim H, Ailshire J, Potter A, Cofferen J, Faul J. Dried blood spots: effects of less than optimal collection, shipping time, heat, and humidity. Am J Hum Biol. 2020;32(5):e23390.

    Article  Google Scholar 

  22. Dockendorf MF, Hansen BJ, Bateman KP, Moyer M, Shah JK, Shipley LA. Digitally enabled, patient-centric clinical trials: shifting the drug development paradigm. Clin Transl Sci. 2021;14(2):445–59.

    Article  Google Scholar 

  23. Guerra Valero Y, Dorofaeff T, Parker L, Coulthard MG, Sparkes L, Lipman J, et al. Microsampling to support pharmacokinetic clinical studies in pediatrics. Pediatr Res. 2021;Online ahead of print. https://doi.org/10.1038/s41390-021-01586-4.

  24. Londhe V, Rajadhyaksha M. Opportunities and obstacles for microsampling techniques in bioanalysis: special focus on DBS and VAMS. J Pharm Biomed Anal. 2020;182:113102.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Bhavna Kantesaria (Merck & Co., Inc., Kenilworth, NJ, USA) is thanked for bioanalytical outsourcing oversight. Medical writing assistance, under the direction of the authors, was provided by Kirsty Muirhead, PhD, of CMC AFFINITY, McCann Health Medical Communications, in accordance with Good Publication Practice (GPP3) guidelines. This assistance was funded by Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA.

Funding

Funding for this research was provided by Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA.

Author information

Authors and Affiliations

Authors

Contributions

Conception, design, or planning of the study: MA, MFD, KPB, JS, EW

Acquisition of the data: MA, IM, IX, SB, DM, SR, WZ, BR

Analysis of the data: MA, MFD, IM, DM, WZ

Interpretation of the results: MFD, SB, DM, WZ, LZ, JS, EW

Drafting of the manuscript: MA

Critically reviewing or revising the manuscript for important intellectual content: MA, MFD, IM, IX, SB, KPB, DM, SR, WZ, LZ, BR, JS, EW

Corresponding author

Correspondence to Melanie Anderson.

Ethics declarations

Conflict of Interest

MA, MFD, IM, IX, SB, DM, SR, WZ, LZ, BR, KPB, JS, and EW are current or former employees of Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA, and may own stock and/or stock options in Merck & Co., Inc., Kenilworth, NJ, USA.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Online Resource 1.

Chromatograms of final assay conditions: (a) verubecestat and internal standard in control blank DBS matrix extract; (b) verubecestat and internal standard from a calibration standard 1 human DBS extract (1.00 ng/mL); (c) degradant and internal standard in control blank human DBS extract; (d) degradant and internal standard from a calibration standard 1 human DBS extract (1.00 ng/mL). DBS, dried blood spot (PDF 290 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anderson, M., Dockendorf, M.F., McIntosh, I. et al. An Investigation of Instability in Dried Blood Spot Samples for Pharmacokinetic Sampling in Phase 3 Trials of Verubecestat. AAPS J 24, 52 (2022). https://doi.org/10.1208/s12248-022-00683-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-022-00683-4

KEY WORDS

Navigation