Skip to main content

Advertisement

Log in

Assessment of Functional Characterization and Comparability of Biotherapeutics: a Review

  • Review Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Abstract. The development of monoclonal antibody (mAb) biosimilars is a complex process. The key to their successful development and commercialization is an in-depth understanding of the key product attributes that impact safety and efficacy and the strategies to control them. Functional assessment of mAb is a crucial part of the comparability of biopharmaceutical drugs. The development of a relevant and robust functional assay requires an interdisciplinary approach and sufficient flexibility to balance regulatory concerns as well as dynamics and variability during the manufacturing process. Although many advanced tools are available to study and compare the potency and bioactivity of the protein, most of these techniques suffer from major shortcomings that limit their routine use. These include the complexity of the task, establishment of the relevance of the chosen method with the mechanism of action (MOA) of the biosimilar, cost and extended time of analysis, and often the ambiguity in interpretation of the resulting data. To overcome or to address these challenges, the use of multiple orthogonal state-of-the-art techniques is a necessary prerequisite.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rathore AS, Chirmule N, Malani H. Reimagining affordable biosimilars. BioPharm Int. 2020;33(10):16–22.

    Google Scholar 

  2. Rathore AS, Bhargava A. Biosimilars in developed economies: overview, status, and regulatory considerations. Regul Toxicol Pharmacol. Academic Press. 2020;110:104525. https://doi.org/10.1016/j.yrtph.2019.104525.

    Article  PubMed  Google Scholar 

  3. Tsuruta LR. Lopes dos Santos M, Moro AM. Biosimilars advancements: moving on to the future. Biotechnol Prog. 2015;31(5):1139–49. https://doi.org/10.1002/btpr.2066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Frapaise FX. The end of phase 3 clinical trials in biosimilars development? BioDrugs. 2018;32(4):319–24. https://doi.org/10.1007/s40259-018-0287-0.

    Article  CAS  PubMed  Google Scholar 

  5. Berkowitz SA, Engen JR, Mazzeo JR, Jones GB. Analytical tools for characterizing biopharmaceuticals and the implications for biosimilars. Nat Rev Drug Discov. 2012;11(7):527–40. https://doi.org/10.1038/nrd3746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Láng JA, Balogh ZC, Nyitrai MF, Juhász C, Gilicze AKB, Iliás A, et al. In vitro functional characterization of biosimilar therapeutic antibodies. Drug Discov Today Technol. 2020. https://doi.org/10.1016/j.ddtec.2020.11.010.

  7. Grilo AL, Mantalaris A. The increasingly human and profitable monoclonal antibody market. Trends Biotechnol. Elsevier Current Trends. 2019;37(1):9–16. https://doi.org/10.1016/j.tibtech.2018.05.014.

    Article  CAS  PubMed  Google Scholar 

  8. Biosimilars approved in the US (Available from: https://www.gabionline.net/biosimilars/general/Biosimilars-approved-in-the-US ) [cited 2021 Oct 11].

  9. Biosimilars approved in Europe (Available from: https://gabionline.net/biosimilars/general/biosimilars-approved-in-europe) [cited 2021 Oct 11].

  10. Moorkens E, Vulto AG, Huys I. An overview of patents on therapeutic monoclonal antibodies in Europe: are they a hurdle to biosimilar market entry? MAbs. 2020;12(1):1743517. https://doi.org/10.1080/19420862.2020.1743517.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kaplon H, Muralidharan M, Schneider Z, Reichert JM. Antibodies to watch in 2020. MAbs. 2020;12(1):1703531. https://doi.org/10.1080/19420862.2019.1703531.

    Article  CAS  PubMed  Google Scholar 

  12. Kaplon H, Reichert JM. Antibodies to watch in 2021. MAbs. 2021;13(1):1860476. https://doi.org/10.1080/19420862.2020.1860476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Arosio P, Rima S, Morbidelli M. Aggregation mechanism of an IgG2 and two IgG1 monoclonal antibodies at low pH: from oligomers to larger aggregates. Pharm Res. 2013;30(3):641–54. https://doi.org/10.1007/s11095-012-0885-3.

    Article  CAS  PubMed  Google Scholar 

  14. Steplewski Z, Sun LK, Shearman CW, Ghrayeb J, Daddona P, Koprowski H. Biological activity of human-mouse IgG1, IgG2, IgG3, and IgG4 chimeric monoclonal antibodies with antitumor specificity. Proc Natl Acad Sci U S A. 1988;85(13):4852–6. https://doi.org/10.1073/pnas.85.13.4852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Beck A, Wagner-Rousset E, Ayoub D, Van Dorsselaer A, Sanglier-Cianférani S. Characterization of therapeutic antibodies and related products. Anal Chem. 2013;85(2):715–36. https://doi.org/10.1021/ac3032355.

    Article  CAS  PubMed  Google Scholar 

  16. Wang Y, Fei D, Vanderlaan M, Song A. Biological activity of bevacizumab, a humanized anti-VEGF antibody in vitro. Angiogenesis. 2004;7(4):335–45. https://doi.org/10.1007/s10456-004-8272-2.

    Article  CAS  PubMed  Google Scholar 

  17. Paek K, Kim GW, Ahn SY, Lim JH, Jung D, Kim S, et al. Assessment of the molecular mechanism of action of SB3, a Trastuzumab Biosimilar. BioDrugs. 2019;33(6):661–71. https://doi.org/10.1007/s40259-019-00381-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang D, Kroe-Barrett R, Singh S, Roberts CJ, Laue TM. IgG cooperativity - is there allostery? Implications for antibody functions and therapeutic antibody development. MAbs. 2017;9(8):1231–52. https://doi.org/10.1080/19420862.2017.1367074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Beyer B, Schuster M, Jungbauer A, Lingg N. Microheterogeneity of recombinant antibodies: analytics and functional impact. Biotechnol J. 2018;13(1). https://doi.org/10.1002/biot.201700476.

  20. Rosales C. Fcγ receptor heterogeneity in leukocyte functional responses. Front Immunol. 2017;8:280. https://doi.org/10.3389/fimmu.2017.00280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. T, Sosa K, Casaco A, López-Requena A, Mateo de Acosta C. Expression and biological characterization of an anti-CD20 biosimilar candidate antibody: a case study. MAbs. 2012;4(4):488–96. https://doi.org/10.4161/mabs.20761.

    Article  Google Scholar 

  22. Bielsky MC, Cook A, Wallington A, Exley A, Kauser S, Hay JL, et al. Streamlined approval of biosimilars: moving on from the confirmatory efficacy trial. Drug Discov Today Elsevier Current Trends. 2020;25(11):1910–8. https://doi.org/10.1016/j.drudis.2020.09.006.

    Article  CAS  Google Scholar 

  23. da Silva A, Kronthaler U, Koppenburg V, Fink M, Meyer I, Papandrikopoulou A, et al. Target-directed development and preclinical characterization of the proposed biosimilar rituximab GP2013. Leuk Lymphoma. 2014;55(7):1609–17. https://doi.org/10.3109/10428194.2013.843090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee KH, Lee J, Bae JS, Kim YJ, Kang HA, Kim SH, et al. Analytical similarity assessment of rituximab biosimilar CT-P10 to reference medicinal product. MAbs. 2018;10(3):380–96. https://doi.org/10.1080/19420862.2018.1433976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Urbano PC, Soccol VT, Azevedo VF. Apoptosis and the FLIP and NF-kappa B proteins as pharmacodynamic criteria for biosimilar TNF-alpha antagonists. Biologics. 2014;8:211–20. https://doi.org/10.2147/BTT.S57253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. White JR, Abodeely M, Ahmed S, Debauve G, Johnson E, Meyer DM, et al. Best practices in bioassay development to support registration of biopharmaceuticals. Biotechniques. 2019;67(3):126–37. https://doi.org/10.2144/btn-2019-0031.

    Article  CAS  PubMed  Google Scholar 

  27. Lu Y, Vernes JM, Chiang N, Ou Q, Ding J, Adams C, et al. Identification of IgG(1) variants with increased affinity to FcγRIIIa and unaltered affinity to FcγRI and FcRn: comparison of soluble receptor-based and cell-based binding assays. J Immunol Methods. 2011;365(1-2):132–41. https://doi.org/10.1016/j.jim.2010.12.014.

    Article  CAS  PubMed  Google Scholar 

  28. Pollard TD. A guide to simple and informative binding assays. Mol Biol Cell. 2010;21(23):4061–7. https://doi.org/10.1091/mbc.E10-08-0683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wild D. The immunoassay handbook: theory and applications of ligand binding, ELISA and related techniques. 4th ed: Elsevier; 2013.

    Google Scholar 

  30. Lebakken CS, Riddle SM, Singh U, Frazee WJ, Eliason HC, Gao Y, et al. Development and applications of a broad-coverage, TR-FRET-based kinase binding assay platform. J Biomol Screen. 2009;14(8):924–35. https://doi.org/10.1177/1087057109339207.

    Article  CAS  PubMed  Google Scholar 

  31. Noto A, Ngauv P, Trautmann L. Cell-based flow cytometry assay to measure cytotoxic activity. J Vis Exp. 2013;82:e51105. https://doi.org/10.3791/51105.

    Article  CAS  Google Scholar 

  32. Cooper MA. Label-free screening of bio-molecular interactions. Anal Bioanal Chem. 2003;377:834–42. https://doi.org/10.1007/s00216-003-2111-y.

    Article  CAS  PubMed  Google Scholar 

  33. Schasfoort RBM. Handbook of surface plasmon resonance. 2nd ed: RSC Publishing; 2017.

    Book  Google Scholar 

  34. Concepcion J, Witte K, Wartchow C, Choo S, Yao D, Persson H, et al. Label-free detection of biomolecular interactions using BioLayer interferometry for kinetic characterization. Comb Chem High Throughput Screen. 2009;12(8):791–800. https://doi.org/10.2174/138620709789104915.

    Article  CAS  PubMed  Google Scholar 

  35. Estep P, Reid F, Nauman C, Liu Y, Sun T, Sun J, et al. High throughput solution-based measurement of antibody-antigen affinity and epitope binning. MAbs. 2013;5(2):270–8. https://doi.org/10.4161/mabs.23049.

    Article  PubMed  PubMed Central  Google Scholar 

  36. DiLillo DJ, Ravetch JV. Fc-receptor interactions regulate both cytotoxic and immunomodulatory therapeutic antibody effector functions. Cancer Immunol Res. 2015;3(7):704–13. https://doi.org/10.1158/2326-6066.

    Article  CAS  PubMed  Google Scholar 

  37. Datta-Mannan A, Wroblewski VJ. Application of FcRn binding assays to guide mAb development. Drug Metab Dispos. 2014;42(11):1867–72. https://doi.org/10.1124/dmd.114.059089.

    Article  CAS  PubMed  Google Scholar 

  38. Hintersteiner B, Lingg N, Zhang P, Woen S, Hoi KM, Stranner S, et al. Charge heterogeneity: Basic antibody charge variants with increased binding to Fc receptors. MAbs. 2016;8(8):1548–60. https://doi.org/10.1080/19420862.2016.1225642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ishino T, Wang M, Mosyak L, Tam A, Duan W, Svenson K, et al. Engineering a monomeric Fc domain modality by N-glycosylation for the half-life extension of biotherapeutics. J Biol Chem. 2013;288(23):16529–37. https://doi.org/10.1074/jbc.M113.457689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Branstetter E, Duff RJ, Kuhns S, Padaki R. Fc glycan sialylation of biotherapeutic monoclonal antibodies has limited impact on antibody-dependent cellular cytotoxicity. FEBS Open Bio. 2021;11(11):2943–9. https://doi.org/10.1002/2211-5463.13267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang Y, Mathur A, Maher G, Arroll T, Bailey R. Impact of IgG2 high molecular weight species on neonatal Fc receptor binding assays. Anal Biochem. 2015;489:25–31. https://doi.org/10.1016/j.ab.2015.07.017.

    Article  CAS  PubMed  Google Scholar 

  42. Bielefeld-Sevigny M. AlphaLISA immunoassay platform- the “no-wash” high-throughput alternative to ELISA. Assay Drug Dev Technol. 2009;7(1):90–2. https://doi.org/10.1089/adt.2009.9996.

    Article  CAS  PubMed  Google Scholar 

  43. Prasad A, Lautenschlager C. A Comparison of AlphaLISA and TR-FRET homogeneous immunoassays in serum-containing samples. Application Note 2009.

  44. Gaboriaud C, Juanhuix J, Gruez A, Lacroix M, Darnault C, Pignol D, et al. The crystal structure of the globular head of complement protein C1q provides a basis for its versatile recognition properties. J Biol Chem. 2003;278(47):46974–82. https://doi.org/10.1074/jbc.M307764200.

    Article  CAS  PubMed  Google Scholar 

  45. Idusogie EE, Presta LG, Gazzano-Santoro H, Totpal K, Wong PY, Ultsch M, et al. Mapping of the C1q binding site on rituxan, a chimeric antibody with a human IgG1 Fc. J Immunol. 2000;164(8):4178–84. https://doi.org/10.4049/jimmunol.164.8.4178.

    Article  CAS  PubMed  Google Scholar 

  46. Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes: from structure to effector functions. Front Immunol. 2014;5:520. https://doi.org/10.3389/fimmu.2014.00520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nimmerjahn F, Anthony RM, Ravetch JV. Agalactosylated IgG antibodies depend on cellular Fc receptors for in vivo activity. Proc Natl Acad Sci U S A. 2007;104(20):8433–7. https://doi.org/10.1073/pnas.0702936104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Patel R, Neill A, Liu H, Andrien B. IgG subclass specificity to C1q determined by surface plasmon resonance using Protein L capture technique. Anal Biochem. 2015;479:15–7. https://doi.org/10.1016/j.ab.2015.03.012.

    Article  CAS  PubMed  Google Scholar 

  49. Zhou W, Lin S, Chen R, Liu J, Li Y. Characterization of antibody-C1q interactions by Biolayer Interferometry. Anal Biochem. 2018;549:143–8. https://doi.org/10.1016/j.ab.2018.03.022.

    Article  CAS  PubMed  Google Scholar 

  50. Liu C, Morrow KJ. Biosimilars of monoclonal antibodies: a practical guide to manufacturing preclinical, and clinical development. Wiley Online. Library. 2016.

  51. Velasco-Velázquez MA, Salinas-Jazmín N, Hisaki-Itaya E, Cobos-Puc L, Xolalpa W, González G, et al. Extensive preclinical evaluation of an infliximab biosimilar candidate. Eur J Pharm Sci. 2017;102:35–45. https://doi.org/10.1016/j.ejps.2017.01.038.

    Article  CAS  PubMed  Google Scholar 

  52. Hu J, Wala I, Han H, Nagatani J, Barger T, Civoli F, et al. Comparison of cell-based and non-cell-based assay platforms for the detection of clinically relevant anti-drug neutralizing antibodies for immunogenicity assessment of therapeutic proteins. J Immunol Methods. 2015;419:1–8. https://doi.org/10.1016/j.jim.2015.02.006.

    Article  CAS  PubMed  Google Scholar 

  53. Eon-Duval A, Broly H, Gleixner R. Quality attributes of recombinant therapeutic proteins: an assessment of impact on safety and efficacy as part of a quality by design development approach. Biotechnol Prog. 2012;28(3):608–22. https://doi.org/10.1002/btpr.1548.

    Article  CAS  PubMed  Google Scholar 

  54. Rathore AS. Follow-on protein products: scientific issues, developments and challenges. Trends Biotechnol. 2009;27(12):698–705. https://doi.org/10.1016/j.tibtech.2009.09.004.

    Article  CAS  PubMed  Google Scholar 

  55. Han YS, Lee JE, Jung JW, Lee JS. Inhibitory effects of bevacizumab on angiogenesis and corneal neovascularization. Graefes Arch Clin Exp Ophthalmol. 2009;247(4):541–8. https://doi.org/10.1007/s00417-008-0976-3.

    Article  CAS  PubMed  Google Scholar 

  56. Bala K, Ambwani K, Gohil NK. Effect of different mitogens and serum concentration on HUVEC morphology and characteristics: implication on use of higher passage cells. Tissue Cell. 2011;43(4):216–22. https://doi.org/10.1016/j.tice.2011.03.004.

    Article  CAS  PubMed  Google Scholar 

  57. Afify SM, Sanchez Calle A, Hassan G, Kumon K, Nawara HM, Zahra MH, et al. A novel model of liver cancer stem cells developed from induced pluripotent stem cells. Br J Cancer. 2020;122(9):1378–90. https://doi.org/10.1038/s41416-020-0792-z.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Lundholt BK, Scudder KM, Pagliaro L. A simple technique for reducing edge effect in cell-based assays. J Biomol Screen. 2003;8(5):566–70. https://doi.org/10.1177/1087057103256465.

    Article  CAS  PubMed  Google Scholar 

  59. Govindarajulu Z. Statistical techniques in bioassay. 2nd ed: Karger Publishers; 2001.

    Book  Google Scholar 

  60. Gottschalk PG, Dunn JR. Measuring parallelism, linearity, and relative potency in bioassay and immunoassay data. J Biopharm Stat. 2005;15(3):437–63. https://doi.org/10.1081/BIP-200056532.

    Article  PubMed  Google Scholar 

  61. Malo N, Hanley JA, Cerquozzi S, Pelletier J, Nadon R. Statistical practice in high-throughput screening data analysis. Nat Biotechnol. 2006;24(2):167–75. https://doi.org/10.1038/nbt1186.

    Article  CAS  PubMed  Google Scholar 

  62. Little TA. Essentials in bioassay design and relative potency determination. Biopharm Int. 2016;29(4):49–52.

    Google Scholar 

  63. Fedorov VV, Leonov SL. Optimal design of dose response experiments: a model-oriented approach. Drug Inf J. 2001;35(4):1373–83. https://doi.org/10.1177/009286150103500433.

    Article  Google Scholar 

  64. Little AT. Out-of-trend identification and removal in stability modelling and regression analysis. Biopharm Int. 2016;29(1):50–5.

    Google Scholar 

  65. USP_1033_Biological Assay Validation. 2010 The United States Pharmacopeial Convention.

  66. Seo N, Polozova A, Zhang M, Yates Z, Cao S, Li H, et al. Analytical and functional similarity of Amgen biosimilar ABP 215 to bevacizumab. MAbs. 2018;10(4):678–91. https://doi.org/10.1080/19420862.2018.1452580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Khawli LA, Goswami S, Hutchinson R, Kwong ZW, Yang J, Wang X, et al. Charge variants in IgG1: isolation, characterization, in vitro binding properties and pharmacokinetics in rats. MAbs. 2010;2(6):613–24. https://doi.org/10.4161/mabs.2.6.13333.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Tanetsugu Y, Tagami T, Terukina T, Ogawa T, Ohta M, Ozeki T. Development of a sustainable release system for a ranibizumab biosimilar using poly(lactic-co-glycolic acid) biodegradable polymer-based microparticles as a platform. Biol Pharm Bull. 2017;40(2):145–50. https://doi.org/10.1248/bpb.b16-00437.

    Article  CAS  PubMed  Google Scholar 

  69. Méry B, Guy JB, Vallard A, Espenel S, Ardail D, Rodriguez-Lafrasse C, et al. In vitro cell death determination for drug discovery: a landscape review of real issues. J Cell Death. 2017;10:1179670717691251. https://doi.org/10.1177/1179670717691251.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Brennan FR, Kiessling A. In vitro assays supporting the safety assessment of immunomodulatory monoclonal antibodies. Toxicol in Vitro. 2017;45(Pt 3):296–308. https://doi.org/10.1016/j.tiv.2017.02.025.

    Article  CAS  PubMed  Google Scholar 

  71. Shealy DJ, Cai A, Staquet K, Baker A, Lacy ER, Johns L, et al. Characterization of golimumab, a human monoclonal antibody specific for human tumor necrosis factor α. MAbs. 2010;2(4):428–39. https://doi.org/10.4161/mabs.12304.

    Article  PubMed  Google Scholar 

  72. Natsume A, Niwa R, Satoh M. Improving effector functions of antibodies for cancer treatment: enhancing ADCC and CDC. Drug Des Devel Ther. 2009;3:7–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Suresh T, Lee LX, Joshi J, Barta SK. New antibody approaches to lymphoma therapy. J Hematol Oncol. 2014;7:58. https://doi.org/10.1186/s13045-014-0058-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Majewska NI, Tejada ML, Betenbaugh MJ, Agarwal N. N-Glycosylation of IgG and IgG-like recombinant therapeutic proteins: why is it important and how can we control it? Annu Rev Chem Biomol Eng. 2020;11:311–38. https://doi.org/10.1146/annurev-chembioeng-102419-010001.

    Article  CAS  PubMed  Google Scholar 

  75. Kute T, Stehle JR Jr, Ornelles D, Walker N, Delbono O, Vaughn JP. Understanding key assay parameters that affect measurements of trastuzumab-mediated ADCC against Her2 positive breast cancer cells. Oncoimmunology. 2012;1(6):810–21. https://doi.org/10.4161/onci.20447.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Schnueriger A, Grau R, Sondermann P, Schreitmueller T, Marti S, Zocher M. Development of a quantitative, cell-line based assay to measure ADCC activity mediated by therapeutic antibodies. Mol Immunol. 2011;48(12-13):1512–7. https://doi.org/10.1016/j.molimm.2011.04.010.

    Article  CAS  PubMed  Google Scholar 

  77. Cheng ZJ, Garvin D, Paguio A, Moravec R, Engel L, Fan F, et al. Development of a robust reporter-based ADCC assay with frozen, thaw-and-use cells to measure Fc effector function of therapeutic antibodies. J Immunol Methods. 2014;414:69–81. https://doi.org/10.1016/j.jim.2014.07.010.

    Article  CAS  PubMed  Google Scholar 

  78. Chung S, Quarmby V, Gao X, Ying Y, Lin L, Reed C, et al. Quantitative evaluation of fucose reducing effects in a humanized antibody on Fcγ receptor binding and antibody-dependent cell-mediated cytotoxicity activities. MAbs. 2012;4(3):326–40. https://doi.org/10.4161/mabs.19941.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Nupur N, Chhabra N, Dash R, Rathore AS. Assessment of structural and functional similarity of biosimilar products: rituximab as a case study. MAbs. 2018;10(1):143–58. https://doi.org/10.1080/19420862.2017.1402996.

    Article  PubMed  Google Scholar 

  80. Visser J, Feuerstein I, Stangler T, Schmiederer T, Fritsch C, Schiestl M. Physicochemical and functional comparability between the proposed biosimilar rituximab GP2013 and originator rituximab. BioDrugs. 2013;27(5):495–507. https://doi.org/10.1007/s40259-013-0036-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Alderson KL, Sondel PM. Clinical cancer therapy by NK cells via antibody-dependent cell-mediated cytotoxicity. J Biomed Biotechnol. 2011;2011:379123. https://doi.org/10.1155/2011/379123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Pereira NA, Chan KF, Lin PC, Song Z. The “less-is-more” in therapeutic antibodies: afucosylated anti-cancer antibodies with enhanced antibody-dependent cellular cytotoxicity. MAbs. 2018;10(5):693–711. https://doi.org/10.1080/19420862.2018.1466767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Herter S, Herting F, Muth G, van Puijenbroek E, Schlothauer T, Ferrara C, et al. GA101 P329GLALA, a variant of obinutuzumab with abolished ADCC, ADCP and CDC function but retained cell death induction, is as efficient as rituximab in B-cell depletion and antitumor activity. Haematologica. 2018;103(2):e78–81. https://doi.org/10.3324/haematol.2017.178996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Petricevic B, Laengle J, Singer J, Sachet M, Fazekas J, Steger G, et al. Trastuzumab mediates antibody-dependent cell-mediated cytotoxicity and phagocytosis to the same extent in both adjuvant and metastatic HER2/neu breast cancer patients. J Transl Med. 2013;11:307. https://doi.org/10.1186/1479-5876-11-307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Rahalkar H, Cetintas HC, Salek S. Quality, Non-clinical and clinical considerations for biosimilar monoclonal antibody development: EU, WHO, USA, Canada, and BRICS-TM regulatory guidelines. Front Pharmacol. 2018;9:1079. https://doi.org/10.3389/fphar.2018.01079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kang J, Kim SY, Vallejo D, Hageman TS, White DR, Benet A, et al. Multifaceted assessment of rituximab biosimilarity: the impact of glycan microheterogeneity on Fc function. Eur J Pharm Biopharm. 2020;146:111–24. https://doi.org/10.1016/j.ejpb.2019.12.003.

    Article  CAS  PubMed  Google Scholar 

  87. Xu Y, Xie L, Zhang E, Gao W, Wang L, Cao Y, et al. Physicochemical and functional assessments demonstrating analytical similarity between rituximab biosimilar HLX01 and the MabThera®. MAbs. 2019;11(3):606–20. https://doi.org/10.1080/19420862.2019.1578147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Cerutti ML, Pesce A, Bès C, Seigelchifer M. Physicochemical and biological characterization of RTXM83, a new rituximab biosimilar. BioDrugs. 2019;33(3):307–19. https://doi.org/10.1007/s40259-019-00349-2.

    Article  CAS  PubMed  Google Scholar 

  89. Montacir O, Montacir H, Eravci M, Springer A, Hinderlich S, Saadati A, et al. Comparability study of Rituximab originator and follow-on biopharmaceutical. J Pharm Biomed Anal. 2017;140:239–51. https://doi.org/10.1016/j.jpba.2017.03.029.

    Article  CAS  PubMed  Google Scholar 

  90. Cuello HA, Segatori VI, Alberto M, Pesce A, Alonso DF, Gabri MR. Comparability of antibody-mediated cell killing activity between a proposed biosimilar RTXM83 and the originator rituximab. BioDrugs. 2016;30(3):225–31. https://doi.org/10.1007/s40259-016-0171-8.

    Article  CAS  PubMed  Google Scholar 

  91. Azevedo V, Dela Coletta Troiano Araujo L, Bassalobre Galli N, Kleinfelder A, Marostica Catolino N, Martins Urbano PC. Adalimumab: a review of the reference product and biosimilars. Biosimilars. 2016;6:29–44. https://doi.org/10.2147/BS.S98177.

    Article  CAS  Google Scholar 

  92. Huizinga TWJ, Torii Y, Muniz R. Adalimumab biosimilars in the treatment of rheumatoid arthritis: a systematic review of the evidence for biosimilarity. Rheumatol Ther. 2021;8(1):41–61. https://doi.org/10.1007/s40744-020-00259-8.

    Article  PubMed  Google Scholar 

  93. Argollo M, Fiorino G, Gilardi D, Furfaro F, Roda G, Loy L, et al. Biosimilars of adalimumab in inflammatory bowel disease: are we ready for that? Curr Pharm Des. 2019;25(1):7–12. https://doi.org/10.2174/1381612825666190312113610.

    Article  CAS  PubMed  Google Scholar 

  94. Hillson J, Mant T, Rosano M, Huntenburg C, Alai-Safar M, Darne S, et al. Pharmacokinetic equivalence, comparable safety, and immunogenicity of an adalimumab biosimilar product (M923) to Humira in healthy subjects. Pharmacol Res Perspect. 2018;6(1):e00380. https://doi.org/10.1002/prp2.380.

    Article  CAS  PubMed Central  Google Scholar 

  95. Magnenat L, Palmese A, Frémaux C, D'amici F, Terlizzese M, Rossi, et al. Demonstration of physicochemical and functional similarity between the proposed biosimilar adalimumab MSB11022 and Humira®. mAbs. 2017;9:127–39. https://doi.org/10.1080/19420862.2016.1259046.

    Article  CAS  PubMed  Google Scholar 

  96. Reusch D, Tejada ML. Fc glycans of therapeutic antibodies as critical quality attributes. Glycobiology. 2015;25(12):1325–34. https://doi.org/10.1093/glycob/cwv065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Mimura Y, Katoh T, Saldova R, O'Flaherty R, Izumi T, Mimura-Kimura Y, et al. Glycosylation engineering of therapeutic IgG antibodies: challenges for the safety, functionality and efficacy. Protein Cell. 2018;9(1):47–62. https://doi.org/10.1007/s13238-017-0433-3.

    Article  CAS  PubMed  Google Scholar 

  98. Pace D, Lewis N, Wu T, Gillespie R, Leiske D, Velayudhan J, et al. Characterizing the effect of multiple Fc glycan attributes on the effector functions and FcγRIIIa receptor binding activity of an IgG1 antibody. Biotechnol Prog. 2016;32(5):1181–92. https://doi.org/10.1002/btpr.2300.

    Article  CAS  PubMed  Google Scholar 

  99. Wen Y, Jawa V. The impact of product and process related critical quality attributes on immunogenicity and adverse immunological effects of biotherapeutics. J Pharm Sci. 2021;110(3):1025–41. https://doi.org/10.1016/j.xphs.2020.12.003.

    Article  CAS  PubMed  Google Scholar 

  100. Bansal R, Dash R, Rathore AS. Impact of mAb aggregation on its biological activity: rituximab as a case study. J Pharm Sci. 2020;109(9):2684–98. https://doi.org/10.1016/j.xphs.2020.05.015.

    Article  CAS  PubMed  Google Scholar 

  101. Dash R, Rathore AS. Freeze thaw and lyophilization induced alteration in mAb therapeutics: trastuzumab as a case study. J Pharm Biomed Anal. 2021;201:114122. https://doi.org/10.1016/j.jpba.2021.114122.

    Article  CAS  PubMed  Google Scholar 

  102. Khawli LA, Goswami S, Hutchinson R, Kwong ZW, Yang J, Wang X, Yao Z, Sreedhara A, Cano T, Tesar D, Nijem I, Allison DE, Wong PY, Kao YH, Quan C, et al. Charge variants in IgG1: isolation, characterization, in vitro binding properties and pharmacokinetics in rats. MAbs. 2010;2(6):613–24. https://doi.org/10.4161/mabs.2.6.13333.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Hajba L, Szekrényes Á, Borza B, Guttman A. On the glycosylation aspects of biosimilarity. Drug Discov Today. 2018;23(3):616–25. https://doi.org/10.1016/j.drudis.2018.01.009.

    Article  CAS  PubMed  Google Scholar 

  104. Duivelshof BL, Jiskoot W, Beck A, Veuthey J-L, Guillarme D, D’Atri V. Glycosylation of biosimilars: recent advances in analytical characterization and clinical implications. Anal Chim Acta. 2019;1089:1–18. https://doi.org/10.1016/j.aca.2019.08.044.

    Article  CAS  PubMed  Google Scholar 

  105. Kang J, Pisupati K, Benet A, Ruotolo BT, Schwendeman SP, Schwendeman A. Infliximab biosimilars in the age of personalized medicine. Trends Biotechnol. 2018;36(10):987–92. https://doi.org/10.1016/j.tibtech.2018.05.002.

    Article  CAS  PubMed  Google Scholar 

  106. Pisupati K, Tian Y, Okbazghi S, Benet A, Ackermann R, Ford M, et al. A multidimensional analytical comparison of remicade and the biosimilar remsima. Anal Chem. 2017;89(9):4838–46. https://doi.org/10.1021/acs.analchem.6b04436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Reusch D, Tejada ML. Fc glycans of therapeutic antibodies as critical quality attributes. Glycobiology. 2015;25(12):1325–34. https://doi.org/10.1093/gly-cob/cwv065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by the Centre of Excellence for Biopharmaceutical Technology grant from the Department of Biotechnology, Ministry of Science and Technology (BT/COE/34/SP15097/2015). RD acknowledges the Indian Council of Medical Research (5/3/8/56/ITR-F/2018-ITR), New Delhi, India, for her fellowship.

Author information

Authors and Affiliations

Authors

Contributions

All authors planned the review. RD and SKS wrote the first draft of the paper. NC and ASR supervised the project. ASR was responsible for the funding and reviewed and edited the final paper.

Corresponding author

Correspondence to Anurag S. Rathore.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Website: www.biotechCMZ.com

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dash, R., Singh, S.K., Chirmule, N. et al. Assessment of Functional Characterization and Comparability of Biotherapeutics: a Review. AAPS J 24, 15 (2022). https://doi.org/10.1208/s12248-021-00671-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-021-00671-0

KEY WORDS

Navigation