Skip to main content
Log in

Mechanistic Fluid Transport Model to Estimate Gastrointestinal Fluid Volume and Its Dynamic Change Over Time

  • Research Article
  • Theme: Advances and Applications of In Vivo Medical Imaging in Drug Development and Regulation
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Gastrointestinal (GI) fluid volume and its dynamic change are integral to study drug disintegration, dissolution, transit, and absorption. However, key questions regarding the local volume and its absorption, secretion, and transit remain unanswered. The dynamic fluid compartment absorption and transit (DFCAT) model is proposed to estimate in vivo GI volume and GI fluid transport based on magnetic resonance imaging (MRI) quantified fluid volume. The model was validated using GI local concentration of phenol red in human GI tract, which was directly measured by human GI intubation study after oral dosing of non-absorbable phenol red. The measured local GI concentration of phenol red ranged from 0.05 to 168 μg/mL (stomach), to 563 μg/mL (duodenum), to 202 μg/mL (proximal jejunum), and to 478 μg/mL (distal jejunum). The DFCAT model characterized observed MRI fluid volume and its dynamic changes from 275 to 46.5 mL in stomach (from 0 to 30 min) with mucus layer volume of 40 mL. The volumes of the 30 small intestine compartments were characterized by a max of 14.98 mL to a min of 0.26 mL (0–120 min) and a mucus layer volume of 5 mL per compartment. Regional fluid volumes over 0 to 120 min ranged from 5.6 to 20.38 mL in the proximal small intestine, 36.4 to 44.08 mL in distal small intestine, and from 42 to 64.46 mL in total small intestine. The DFCAT model can be applied to predict drug dissolution and absorption in the human GI tract with future improvements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Huang W, Lee SL, Yu LX. Mechanistic approaches to predicting oral drug absorption. AAPS J. 2009;11(2):217–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kostewicz ES, Aarons L, Bergstrand M, Bolger MB, Galetin A, Hatley O, et al. PBPK models for the prediction of in vivo performance of oral dosage forms. Eur J Pharm Sci. 2014;57:300–21.

    Article  CAS  PubMed  Google Scholar 

  3. Sjogren E, Thorn H, Tannergren C. In Silico modeling of gastrointestinal drug absorption: predictive performance of three physiologically based absorption models. Mol Pharm. 2016;13(6):1763–78.

    Article  PubMed  Google Scholar 

  4. Yu LX, Amidon GL. A compartmental absorption and transit model for estimating oral drug absorption. Int J Pharm. 1999;186(2):119–25.

    Article  CAS  PubMed  Google Scholar 

  5. Agoram B, Woltosz WS, Bolger MB. Predicting the impact of physiological and biochemical processes on oral drug bioavailability. Adv Drug Deliv Rev. 2001;50(Suppl 1):S41–67.

    Article  CAS  PubMed  Google Scholar 

  6. Jamei M, Turner D, Yang J, Neuhoff S, Polak S, Rostami-Hodjegan A, et al. Population-based mechanistic prediction of oral drug absorption. AAPS J. 2009;11(2):225–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hellström PM, Grybäck P, Jacobsson H. The physiology of gastric emptying. Best Pract Res Clin Anaesthesiol. 2006;20(3):397–407.

    Article  PubMed  Google Scholar 

  8. Mudie DM, Murray K, Hoad CL, Pritchard SE, Garnett MC, Amidon GL, et al. Quantification of gastrointestinal liquid volumes and distribution following a 240 mL dose of water in the fasted state. Mol Pharm. 2014;11(9):3039–47.

    Article  CAS  PubMed  Google Scholar 

  9. Greger R, Windhorst U. Comprehensive Human Physiology: From Cellular Mechanisms to Integration. Berlin: Springer; 2013.

    Google Scholar 

  10. Roy H. Short textbook of surgery. New Delhi: Jaypee Brothers Medical Publishers Pvt. Limited; 2010. p. 202.

  11. Johansson MEV, Gustafsson JK, Holmén-Larsson J, Jabbar KS, Xia L, Xu H, et al. Bacteria penetrate the normally impenetrable inner colon mucus layer in both murine colitis models and patients with ulcerative colitis. Gut. 2013.

  12. Pelaseyed T, Bergström JH, Gustafsson JK, Ermund A, Birchenough GMH, Schütte A, et al. The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system. Immunol Rev. 2014;260(1):8–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Derrien M, van Passel MWJ, van de Bovenkamp JHB, Schipper RG, de Vos WM, Dekker J. Mucin-bacterial interactions in the human oral cavity and digestive tract. Gut Microbes. 2010;1(4):254–68.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ferrua MJ, Singh RP. Modeling the fluid dynamics in a human stomach to gain insight of food digestion. J Food Sci. 2010;75(7):R151–R62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yu LX, Crison JR, Amidon GL. Compartmental transit and dispersion model analysis of small intestinal transit flow in humans. Int J Pharm. 1996;140(1):111–8.

    Article  CAS  Google Scholar 

  16. Péronnet F, Mignault D, du Souich P, Vergne S, Le Bellego L, Jimenez L, et al. Pharmacokinetic analysis of absorption, distribution and disappearance of ingested water labeled with D(2)O in humans. Eur J Appl Physiol. 2012;112(6):2213–22.

    Article  PubMed  Google Scholar 

  17. Ogungbenro K, Pertinez H, Aarons L. Empirical and semi-mechanistic Modelling of double-peaked pharmacokinetic profile phenomenon due to gastric emptying. AAPS J. 2015;17(1):227–36.

    Article  CAS  PubMed  Google Scholar 

  18. Davenport HW. Physiology of the digestive tract: an introductory text, vol. vii. Chicago: Year Book Medical Publishers; 1982. p. 245.

    Google Scholar 

  19. Hounnou G, Destrieux C, Desmé J, Bertrand P, Velut S. Anatomical study of the length of the human intestine. Surg Radiol Anat. 2002;24(5):290–4.

    Article  CAS  PubMed  Google Scholar 

  20. Cronin CG, Delappe E, Lohan DG, Roche C, Murphy JM. Normal small bowel wall characteristics on MR enterography. Eur J Radiol. 2010;75(2):207–11.

    Article  PubMed  Google Scholar 

  21. Yu LX, Lipka E, Crison JR, Amidon GL. Transport approaches to the biopharmaceutical design of oral drug delivery systems: prediction of intestinal absorption. Adv Drug Deliv Rev. 1996;19(3):359–76.

    Article  CAS  PubMed  Google Scholar 

  22. Lennernäs H, Aarons L, Augustijns P, Beato S, Bolger M, Box K, et al. Oral biopharmaceutics tools – time for a new initiative – an introduction to the IMI project OrBiTo. Eur J Pharm Sci. 2014;57:292–9.

    Article  PubMed  Google Scholar 

  23. Hoad CL, Marciani L, Foley S, Totman JJ, Wright J, Bush D, et al. Non-invasive quantification of small bowel water content by MRI: a validation study. Phys Med Biol. 2007;52(23):6909–22.

    Article  CAS  PubMed  Google Scholar 

  24. Schiller C, Frohlich CP, Giessmann T, Siegmund W, Monnikes H, Hosten N, et al. Intestinal fluid volumes and transit of dosage forms as assessed by magnetic resonance imaging. Aliment Pharmacol Ther. 2005;22(10):971–9.

    Article  CAS  PubMed  Google Scholar 

  25. Shingaki T, Takashima T, Wada Y, Tanaka M, Kataoka M, Ishii A, et al. Imaging of gastrointestinal absorption and biodistribution of an orally administered probe using positron emission tomography in humans. Clin Pharmacol Ther. 2012;91(4):653–9.

    Article  CAS  PubMed  Google Scholar 

  26. Mudie DM, Amidon GL, Amidon GE. Physiological parameters for oral delivery and in vitro testing. Mol Pharm. 2010;7(5):1388–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duxin Sun.

Ethics declarations

Ethics Statement

The study was approved by University of Michigan IRBMED HUM00085066 and the Food and Drug Administration (RIHSC protocol 14-029D. Study volunteers provided written informed consent. The study was in accordance with study protocol, the International Conference on Harmonization of Good Clinical Practice guidelines, and applicable local regulatory requirements. The ClinicalTrials.gov identifier is NCT02806869.

Additional information

Guest Editors: Peng Zou, Doanh Tran, and Edward Bashaw

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, A., Jackson, T., Tsume, Y. et al. Mechanistic Fluid Transport Model to Estimate Gastrointestinal Fluid Volume and Its Dynamic Change Over Time. AAPS J 19, 1682–1690 (2017). https://doi.org/10.1208/s12248-017-0145-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-017-0145-x

KEY WORDS

Navigation