Skip to main content
Log in

Spatial sampling design for prediction with estimated parameters

  • Published:
Journal of Agricultural, Biological, and Environmental Statistics Aims and scope Submit manuscript

Abstract

We study spatial sampling design for prediction of stationary isotropic Gaussian processes with estimated parameters of the covariance function. The key issue is how to incorporate the parameter uncertainty into design criteria to correctly represent the uncertainty in prediction. Several possible design criteria are discussed that incorporate the parameter uncertainty. A simulated annealing algorithm is employed to search for the optimal design of small sample size and a two-step algorithm is proposed for moderately large sample sizes. Simulation results are presented for the Matérn class of covariance functions. An example of redesigning the air monitoring network in EPA Region 5 for monitoring sulfur dioxide is given to illustrate the possible differences our proposed design criterion can make in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramowitz, M., and Stegun, I. (1965), Handbook of Mathematical Functions (9th ed.), New York: Dover.

    Google Scholar 

  • Abt, M. (1999), “Estimating the Prediction Mean Squared Error in Gaussian Stochastic Processes With Exponential Correlation Structure,” Scandinavian Journal of Statistics, 26, 563–578.

    Article  MATH  MathSciNet  Google Scholar 

  • Banjevic, M., and Switzer, P. (2002), “Bayesian Netoork Designs for Fields with Variance as a Function of the Location,” in Proceedings of the 2002 JSM Conference.

  • Baumgardner, R. E., Isil, S. S., Bowser, J. J., and Fitzgerald, K. M. (1999), “Measurements of Rural Sulfur Dioxide and Particle Sulfate: Analysis of CASTNet Data, 1987 through 1996,” Journal of the Air & Waste Management Association, 49, 1266–1279.

    Google Scholar 

  • Baumgardner, R. E., Lavery, T. F., Rogers, C. M., and et al. (2002), “Estimates of the Atmospheric Deposition of Sulfur and Nitrogen Species: Clean Air Status and Trends Network, 1990–2000,” Environmental Science & Technology, 36, 2614–2629.

    Article  Google Scholar 

  • Benhenni, K., and Cambanis, S. (1992), “Sampling Designs for Estimating Integrals of Stochastic Processes,” The Annals of Statistics, 20, 161–194.

    Article  MATH  MathSciNet  Google Scholar 

  • Caselton, W. F., and Zidek, J. V. (1984), “Optimal Monitoring Network Designs,” Statistics and Probability Letters, 2, 223–227.

    Article  MATH  Google Scholar 

  • Caselton, W. F., Kan, L., and Zidek, J. V. (1992), “Quality Data Networks that Minimize Entropy,” in Statistics in the Environmental and Earth Sciences, eds. A. T. Walden and P. Guttorp, London: Edward Arnold, pp. 10–38.

    Google Scholar 

  • Cressie, N. (1993), Statistics for Spatial Data (rev. ed.), New York: Wiley.

    Google Scholar 

  • Cressie, N., and Lahiri, S. N. (1993), “The Asymptotic Distribution of REML Estimators,” Journal of Multivariate Analysis, 45, 217–233.

    Article  MATH  MathSciNet  Google Scholar 

  • Davison, A. C., and Hinkley, D. V. (1997), Bootstrap Methods and Their Application, New York: Cambridge University Press.

    MATH  Google Scholar 

  • Diggle, P. J., and Ribeiro, P. J. (2002), “Bayesian Inference in Gaussian Model Based Geostatistics,” Geographical and Environmental Modeling, 6, 129–146.

    Article  Google Scholar 

  • Diggle, P. J., Tawn, J. A., and Moyeed, R. A. (1998), “Model-Based Geostatistics,” Applied Statistics, 47, 299–326.

    MATH  MathSciNet  Google Scholar 

  • Guttorp, P., Le, N. D., Sampson, P. D., and Zidek, J. V. (1993), “Using Entropy in the Redesign of an Environmental Monitoring Network,” in Multivariate Environmental Statistics, eds. G. P. Patil and C. R. Rao, Amsterdam: Elsevier, pp. 175–202.

    Google Scholar 

  • Handcock, M. S., and Wallis, J. R. (1994), “An Approach to Statistical Spatial-Temporal Modeling of Meteorological Fields,” Journal of the American Statistical Association, 89, 368–378.

    Article  MATH  MathSciNet  Google Scholar 

  • Harville, D. A., and Jeske, D. R. (1992), “Mean Squared Error of Estimation or Prediction Under a General Linear Model,” Journal of the American Statistical Association, 87, 724–731.

    Article  MATH  MathSciNet  Google Scholar 

  • Holland, D. M., Caragea, P., and Smith, S. L. (2004), “Regional Trends in Rural Sulfur Concentrations,” Atmospheric Environment, 38, 1673–1684.

    Article  Google Scholar 

  • Kackar, R. N., and Harville, D. A. (1984), “Approximations for Standard Errors of Estimators of Fixed and Random Effects in Mixed Linear Models,” Journal of the American Statistical Association, 79, 853–862.

    Article  MATH  MathSciNet  Google Scholar 

  • Ko, C., Lee, J., and Queyranne, M. (1995), “An Exact Algorithm for Maximum Entropy Sampling,” Operations Research, 43, 684–691.

    Article  MATH  MathSciNet  Google Scholar 

  • Lark, R. M. (2002), “Optimized Spatial Sampling of Soil for Estimation of the Variogram by Maximum Likelihood,” Geoderma, 105, 49–80.

    Article  Google Scholar 

  • Lee, J. (1998), “Constrained Maximum-Entropy Sampling,” Operations Research, 46, 655–664.

    Article  MATH  Google Scholar 

  • Malm, W. C., Schichtel, B. A., Ames, R. B., and et al. (2002), “A 10-year Spatial and Temporal Trend of Sulfate Across the United States,” Journal of Geophysical Research-Atmospheres, 107(D22), 4627.

    Article  Google Scholar 

  • Mardia, K. V., and Marshall, R. J. (1984), “Maximum Likelihood Estimation of Models for Residual Covariance in Spatial Regression,” Biometrika, 71, 135–146.

    Article  MATH  MathSciNet  Google Scholar 

  • McBratney, A. B., Webster, R., and Burgess, T. M. (1981), “The Design of Optimal Sampling Schemes for Local Estimation and Mapping of Regionalized Variables, I—Theory and Method,” Computers and Geosciences, 7, 331–334.

    Article  Google Scholar 

  • McCullagh, P., and Nelder, J. A. (1989), Generalized Linear Models (2nd ed.), London: Chapman & Hall.

    MATH  Google Scholar 

  • Mueller, S. F. (2003), “Seasonal Aerosol Sulfate Trends for Selected Regions of the United States,” Journal of the Air & Waste Management Association, 53, 168–184.

    Google Scholar 

  • Müller-Gronbach, T., and Ritter, K. (1998), “Spatial Adaption for Predicting Random Functions,” The Annals of Statistics, 26, 2264–2288.

    Article  MATH  MathSciNet  Google Scholar 

  • Patterson, H. D., and Thompson, R. (1971), “Recovery of Inter-Block Information When Block Sizes are Unequal,” Biometrika, 58, 545–554.

    Article  MATH  MathSciNet  Google Scholar 

  • Ritter, K. (1996), “Asymptotic Optimality of Regular Sequence Designs,” The Annals of Statistics, 24, 2081–2096.

    Article  MATH  MathSciNet  Google Scholar 

  • Sacks, J., Welch, W. J., Mitchell, T. J., Wynn, H. P. (1989), “Design and Analysis of Computer Experiments,” Statistical Science, 4, 409–423.

    Article  MATH  MathSciNet  Google Scholar 

  • Smith, R. L., and Zhu, Z. (2004), “Asymptotic Theory for Kriging with Estimated Parameters and its Application to Network Design,” available online at: http://www.unc.edu/depts/statistics/postscript/rs/supp5.pdf.

  • Stein, M. L. (1995), “Locally Lattice Sampling Designs for Isotropic Random Fields,” The Annals of Statistics, 23, 1991–2012.

    Article  MATH  MathSciNet  Google Scholar 

  • — (1999), Interpolation of Spatial Data: Some Theory for Kriging, New York: Springer-Verlag.

    Google Scholar 

  • van Groenigen, J. W., and Stein, A. (1998), “Constrained Optimization of Spatial Sampling using Continuous Simulated Annealing,” Journal of Environomental Quality, 43, 684–691.

    Google Scholar 

  • Wiens, D. P. (2004), “Robustness in Spatial Studies I: Minimax Design,” Environmetrics, in press.

  • Wikle, C. K., and Royle, J. A. (1999), “Space-Time Dynamic Design of Environmental Monitoring Networks,” Journal of Agricultural, Biological, and Environmental Statistics, 4, 489–507.

    Article  MathSciNet  Google Scholar 

  • Yfantis, E. A., Flatman, G. T., and Behar, J. V. (1987), “Efficiency of Kriging Estimation for Square, Triangular, and Hexagonal Grids,” Mathematical Geology, 19, 183–205.

    Article  Google Scholar 

  • Zhu, Z., and Stein, M. L. (2005), “Spatial Sampling Design for Parameter Estimation of the Covariance Function,” Journal of Statistical Planning and Inference, 134, 583–603.

    Article  MATH  MathSciNet  Google Scholar 

  • Zidek, J. V., Sun, W. M., and Le, N. D. (2000), “Designing and Integrating Composite Networks for Monitoring Multivariate Gaussian Pollution Fields,” Journal of the Royal Statistical Society, Ser. C, 49, 63–79.

    Article  MATH  MathSciNet  Google Scholar 

  • Zimmerman, D. L. (2005), “Optimal Network Design for Spatial Prediction, Covariance Parameter Estimation, and Empirical Prediction,” Environmetrics, in press.

  • Zimmerman, D. L., and Cressie, N. (1992), “Mean Squared Prediction Error in the Spatial Linear Model with Estimated Covariance Parameters,” Annals of the Institute of Statistical Mathematics, 44, 27–43.

    Article  MATH  MathSciNet  Google Scholar 

  • Zimmerman, D. L., and Zimmerman, M. B. (1991), “A Comparison of Spatial Semivariogram Estimators and Corresponding Ordinary Kriging Predictors,” Technometrics, 33, 77–91.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengyuan Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Z., Stein, M.L. Spatial sampling design for prediction with estimated parameters. JABES 11, 24–44 (2006). https://doi.org/10.1198/108571106X99751

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1198/108571106X99751

Key Words

Navigation